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Abstract

Ensemble forecasting has proved to be a successful way of dealing with the inherent
uncertainties of weather and climate forecasts. A Unified Model based 45 members (44 + 1
control) Global Ensemble Prediction System whibrizontal resolution of33 km and70
vertical levelsis implemented at NCMRWF in BhaskarPC. This ensemble prediction
system (NEPS) is a recent version of Met office Global and regional ensemble forecasting
system (MOGREPS). The initial condition perturbations are generated by Ensemble
Transform Kalman Filter (ETKF) method. The model urmettes are taken care by the
Stochastic Kinetic Energy Backscatter and Randemnameters schemes. The forecast
perturbations obtained fromi& short forecast run of 45 members are updated by ETKF four
times a day (00, 06, 12 and 18 UTC). A 10 day foresaprepared everyday based on 00
UTC initial conditions. This report describes various components of NEPS system at

NCMRWEF. It also presents a brief description of different ensemble forecast products.



1. Introduction

Initial approaches of Numeal Weather Prediction (NWP) were deterministic. In the
beginning of 1950s, under the guidance of John von Neumann and with Institutional support
of Princetonds | nst Chamdy eandfhis teamfotiresaancbees made u d vy ,
first successfuR4 hours forecasts of the transient features of large scale atmospheric flow by
advecting geostrophic vorticity with the geostrophic wind (Charney et al. 1950). By the late
1950s there was hope that the prediction beyond several days would be possiblariy a
single NWP model. Despite the fact that the NWP results were encouraging, the limit of
deterministic prediction became a matter of concern. In 1960s it became known that the
presence of uncertainties in the estimation of initial condition amduilation of the model
and the fact that the atmosphere and its numerical model are chaotic, placed a limit to the
predictability of the system. Initial condition errors are due to inaccuracies in the estimation
of initial condition of the modelwhich thencan grow with forecast lead timeThe
inaccuracies in the representation of dynamical and physical processes of the atmosphere in
the model account for the model errd&ce model error influences the estimation of model
initial state also it is not petble to quantify the individual contributions of these errBesly
(1951)was first to express his concern about the strictly deterministic approach in NWP and
advocated for probabilistic approach. The practical implementation of the approach that

combnes probability with determinism is called Ensemble Prediction.

Lorentz (1965) and Epstein (1969) brought the idea of ensemble forecasting in
numerical weather prediction. Leith (1974) implemented the idea of ensemble forecasting
with random perturbatian (Monte Carlo forecasting) in perfect model environment.
According to him if the perturbations correctly represent the uncertainties in the initial
condtion, ensemble forecastinggven with a small number of ensemble memberan
become usefulAn excelkent review article by Lewis (2005) presents historical details of the
early research on predictability and ensemble forecadfimgemble prediction systems were
first implemented operationally early in the 1990s in European Centre for Mednge
WeatherForecast (ECMWF) (Palmeat al, 1993; Molteniet al, 1996); the US National
Cente for Environmental Prediction (NCEP) (Toth&Kalnay,1993; and the Rechercheen
PrévisionNumérique (RPN) in Canada (Houtekareerl, 1996).

An ensemble prediction systamsually includes a control forecastcha good number

of perturbedforecasts. The control forecast is one that starts from the best estimated state



(based on available observations) of the atmosphere (analysis) prepared by the data
assimilation system. Itial conditions for other ensemble members are generated by adding
perturbations (or errors) to the analysis. During the early stage of the forecast, error grows
more or less linearly with time and the deterministic forecast shows good skill. During this
period the small error in the initial condition remains small and trajectories of the model
forecast and the oOtruthoé are close to each
range of linear error growth, deterministic forecast loses its skillehsemble mean (or
average) can be treated as a single forecast representing the best available estimate of the
future atmosphere. By calculating the ensemble average the unpredictable components of the
forecast are filtered out and those are retaineddhadv agreement between the ensemble
members. This filtering takes place within the nonlinear evolution of the perturbation. During
linear regime ensemble average forecast is no better than control forecast. Another important
use of ensemble forecastingtiat it provides an indication of the reliability of the forecast.
Spread in the forecast is a measure of disagreement between the ensemble members. A good
agreement among the members results in less spread and a good reason to become confident
about the drecast. The third important aspect of ensemble prediction is that it provides a

guantitative basis for probabilistic forecasting.

Ensemble forecasting methods in different operational centres around the world
mostly differ by the way in which initial condition perturbations are generated. The simplest
way to generate perturbations is to add random (Monte Carlo) noise to the aigahalis.
However, Hollingworth (1980), Hoffman and Kalnay (1983) and Kalnay and Toth (1996)
showed that the real analysis errors grow much faster than the random initial perturbations.
By construction, perturbations generated by Monte Carlo methoddomat | ude t he Agr
errors of the dayo. A second cl ass of met ho
perturbations were developed, tested and implemented at various operational centres around
t he worl d. ABr eedi ngo samnpdrturbason gemerdtian rie irvthic t or 0O
class. Breeding vectors (BVs) (Toth and Kalnay, 1993) are used to generate perturbations to
the initial condition at NCEP and the singular vector (SV) approach is used at ECMWF
(Buizza an Palmer, 1995; Molteni et,al996). In Met Office, UK, Ensemble Transform
Kalman Filter (ETKF) (Bishop et al., 2001) is used in its Global and Regional Ensemble
Prediction System (MOGREPS) to generate initial perturbations. This method is similar to
the error breeding method (prebed by Toth and Kalnay, 1993) with some differences as
shown in the Fig. 1(a). In ETKF (Figure 1(b)), the analysis perturbation of each member is
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the linear combination of the forecast perturbations. This mixing of forecast perturbations
which produces mrtually orthogonal analysis perturbations leads to improved performance of
ETKF over the error breeding method (Wang et al., 2004).

Control Scaling Control
forecast analysis

Perturbed
analysis

(b)

. | 1

£ g S ;
Perturbed Ensemble Transform Control Perturbed
forecasts mean forecast matrix analysis analysis

Figure 1:Graphical representatiorof the (a) errorbreeding method (b) ETKF (courtesy
Bowler et al, 2008)

In NCMRWF, the global version of MOGREPS has been implemented for operational
ensemble prediction. This Unified Model (UM) based ensemble prediction system at
NCMRWF (NEPS) also uses ETKF for generation of initial perturbations. Model

uncertaintiesare also taken care in this MOGREPS based system since the forecast uses
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stochastic physics schemes that con2002t of
and AStochastic Kinetic Energy Backscattero
paraméer (RP) scheme incorporates uncertainties in the empirical parameters of the physical
parameterization schemes. It also simulates thedeterministic processes not explicitly
accounted for by different parameterizations. In real atmosphere, energyaaleg from the

small to largescale flow through physical processes. It is very difficult to include this energy
transfer in a nuerical weather prediction moddihis results in a loss of kinetic energy from

the model environment. Moreover, the sdragrangian advection scheme used in UM
involves interpolation of prognostic field to the departure point and it acts to smooth field and
remove energy. Also, use of horizontal diffusion terms to smooth model fields lead to
excessive energy dissipation. The@tastic Kinetic Energy Backscatter Scheme (SKEB2) is
implemented in UM to inject the loss in kinetic energy back into the model (Tennant et al.,
2011)

2. Methodology
2.1Brief Description of NEPS

The NEPS implemented in NCMRWEF is fundamentally the same as the original
MOGREPS developed aflet Office, UK This global ensemble prediction system has a
horizontal resolution of approximately 33 km and 70 vertical levels (N400L70). A total of 45
ensemblemembers (44 perturbed forecasts and 1 control forecast) constitute this ensemble
system.The 44 analysis perturbations for all the ensemble members are generated by ETKF
systemfour times a day (at 00, 06, 12 and 18 UTC) from the previous 6 hr shoragtoéc
the evolved perturbations for the vaeseabl es
analysis perturbations are added to the reconfigured analysis from thiglifioemsional
variational data assimilation system UAR) of Unified Model (vesion 8.5) operational at
NCMRWF (NCUM). A 10 day forecast of NEPS is routinely generated based on 00 UTC
initial conditionswhich includea control forecast (Cntl) with the 4DAR analysis and 44
ensemble member forecasts (Ens) with 44 perturbed indiaditions. The sequences of all
the processes involved in NEPS operational at NCMRWF are represented by the flow

diagram shown in Figure 2.
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Figure 2: NEPS Flovdiagram showing short forecast cycle with ETKF

2.2 Computationalinfrastructure

NEPS is mplemented and run omhaskaraHPC at NCMRWF. This HPC
has105ataPlex dx360 M4Zomputenodes each configured with 16 cores of Intel Sandy
bridge processors clocking at 2.6 GHz, with 64 GB DDR3 1600MHz RAM per Compute
node It is capable of delivering 350eraflops of peak compuyg power. Number of

processors used and the wall clock time taken by each component are given in Table 1.

Table 1: Performance of various NEPS componenia Bhaskara HPC

NEPS Forecast Total no of Cycles Wall clock time

Components length (hrs) Processors | (UTC)

Trimobstore 6 1 1 00,06, 12,18 5 min

OPS cntl & ens 6 25 25x16x23 -do- 20 min
25x16x22

ETKF 6 1 1 -do- 24 min

Short forecast 6 10 10x16x45 -do- 10 min

Cntl &Ens

Long forecast 240 10 10x16x45 00 3 hrs 10 min

Cntl &Ens



2.3 Description of NEPS components
Various components of NEPS system are briefly described below.
2.3.1TRIMOBSTORE
The fAobstoreo files are the KBeaOfficati on f
specific format known as fAobstoreodo).(ikkach ot
Surface.obstore, Sonde.obstore, Aircraft.obstore, ATOVS.obstore etc.). The description of
various types of observations (fAobstoreo fil
Observation Processing System (OPS) of deterministic forecasistgem reads the
observations from the obstore files. It also reads the model background files from
deterministic UM short forecast and an OPS background error file. The processing of
observation job is done by fAextrexdtraamnad prad
retrieves the observations from the obstore
quality control, thinning and rewriting the data in required formats. There are mainly three
data structures in which the observation and modal padcessed by OPS are writtdine
three types of out put from the OPS (fextra
controlled observations), (2) varcx (horizontally interpolated background fields at observation
location for use in 4B/AR) and (3)Modelobs (Background fields exactly like observation
fields at observation locations).
Only the quality controlled and thinned
written in varobdiles by OPS (using the model background information). In NEPS, 1 control
and 44 ensemble members have to process (since OPS uses Model background information
as well) these fAobstoreo files to generate f
essential to remove the unwanted observations from obstore files in order to speed up the
process of preparing fAimodel obsodo and Avarobs.
Atri mobstored program is employedhto iAivarmbs
file (generated by OPS task of deterministic forecast system using deterministic forecast
background) and the original Aobstoreo file
Afobstoreo file which containsfivadsebsatfohestf
obstore files are then used as input to the OPS task of NEPS to generate modelobs and varobs
files. The tasks of Atri mobstoreo are summar
(a) It reads the input obstore files.
(b) It reads the input varobs files generatgdibterministic forecasting system.
(c) Selects only those observations from the obstore files that are present in varobs
(d) Write the trimmed observation in a new obstore file.
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Table 2: Description of the observations used in data assimilation system of NEPS

SI.No. | ObservationType Brief description of the various subtypes of
(fobstoreo observations included in a observation type

1. | Aircraft Aircraft-based observations reported by the Airc
Meteorological Data Reporting (AMDAR) system a
aircraftreports (AIREP)

2. | Sonde Radiosonde, wind profiler, dropsonde and Indian D
VAD/VPP wind observations

3. | Surface Sur face based observati
surface: Land surface (SYNOPS), Mobile SYNC
METAR, Ships, BUOY

4. | Satwind Atmospheric  wind observations (AMV)  from
geostationaryand polar orbitingsatellites: Meteosat,
Meteosat9, GOESE, GOESW, MTSAT-1R,MODIS
(TERRA and AQUA), NOAAand MetOp

5. | Scatwind Sea surface wind observations: ASCAT winds frof
MetOp satellits,

6. | GPSRO Radiooccultation observations from various satelliteg

7. | GOESClear GOES Imager radiances from GOES W

8. | ATOVS Advanced Television Infrared Observation Sate
(TIROS) Operational Vertical Sounder (ATOV
observations from various NOAA and MetOp satellit

9. | AIRS Atmospheric Infrared Sounder observations fr
AQUA satellite

10. | IASI Infrared  Atmospheric  Sounding  Interferome
observations MetOp satellites




2.3.20bservationProcessingSystem (OPS)

OPS (version 30.1) task of NEPS is run to produex®bs files for control member
and the modelobs files for all the 44 ensemble members. The modelobs files contain the
model forecast of the observations. ETKF does not need to have the observation operator as
the modelobs files produced by OPS are alremgilable to it. The trimmed obstore files
produced by trimobstore program are used as input to the OPS task. The OPS tasks for the
control and ensemble members are iuparallelto process 10 types of observations. The
number of processors employedctumplete the processing of different types of observations
depends on the volume of data contained in the obstore files. A list of number of processors

allotted for each type of observation is given in Table 3.

Table 3: Number of processors allotted for ppcessing different types
of observationsin OPS of operational NEPS system

Serial No. Observation Type No. of processors
11. Aircraft 8
12. Sonde 8
13. Surface 8
14. Satwind 8
15. Scatwind 8
16. GPSRO 8
17. GOESClear 32
18. ATOVS 64
19. AIRS 128
20. IASI 128

OPScarriesout quality control of the observatiamhich includes internatonsistency
checls, checks against model background and checks against neigigbabservationsThe
processed observati 6né$ ear e Ewc ht tianmespbndinged v a f o
i v ar o bBhé batkgrdoued (first guess) processing is also aopart t he OPS fAextr
processo. When background cémee buth n( fiierxsttr agu e <
processo along with the ollusrsrol/ mddel aata aper oc e s
interpolatedhorizontally to the observation locatiofor the data assimilation system as

Avar cxToh & iAnmncd e dlsodorgain thE mddédackgroundforecasy interpolated



to dbservation location, but exactly similar tubservations. In the ETKF system, only

modelobs (not varcx) files are used.

OPS also generstea fibackegrrooundd usikggoume BBaacr C
component (glu.bgerr created by OPS in deterministic analysis procébgse
geographicdy varying malel errors are determined using mofl@ecast (background or
first guess}endency, moddiorecastgradient and backgrounsiind speed information taken
from the background fileA detailed description of the OPS system at NGMRis given in
Rajagopal eal. (2012 andGeorgeet al.(2016.

The calculation of transformation matrix in ETKF requires the model equivalent of
each observation for every ensemble member. Successful completion of OPS task for each
ensemble members providasodt ha sSwodeopstfilesnagno od b s «
i nput to ETKF. The fAmodel obsd and vMambs f i
inputs and outputs of OPS in the NEPS system are described below.

Main Inputs to OPS:
i) Observations: Observation files inbstore format (obtained from trimobstore).
i) Model background: Three hourly model forecast fields of the same ensemble member
over the assimilation cycle
iii) Background error (OPS Background error): Prepared by OPS task based on model
forecast (background) andh e previ ous cycl eds backgroun
iv) Fixed files: RTTOV coefficients, SatRad coefficients, SatRad biases, Station list,

Sonde coefficients etc.

Main Outputs from OPS:
i) Varobs:prepr ocessed observations (fAextract and
i) Modelobs: The radel equivalent of observation. These files contaodel forecast
data interpolated to observation positions
i) Background error: Prepared by fdAbackgroun

model forecast (background) afilel t he previ

2.3.3 Reconfiguration

The resolution of NEPS is N40OL70 (horizontal resolution ~ 38kmmid-latitudes)
and that of the UM deterministic model operational at NCMRWF (NCUM) is N768L70
(horizontal resolution ~ 17 knm mid-latitudes). Analysis filesare prepared by 40VAR
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assimilation system of NCMRWF at 00, 06, 12 and 18 UTC using the deterministic UM
model forecast as first guess. All the member models of NEPS use this analysis.
Reconfiguration is the tool used to change the resolution of the dgpatand generate a
reconfigured initial dump. Through reconfiguration task, NEPS recon8gtre initial
analysis file produced by 4MAR assimilation system to generate a suitable initial dump to

run the control and ensemble members of NEPS.

The reonfiguration step is run on multiple processors of HPC to gain the speed and
memory improvements. To run reconfiguration on multiple processors, a method of domain
decomposition is used in which processing element (PE) carries out the calculations for a
portion of the whole grid. The atmosphere model is decomposed in two dimensions so two
values of number of PEs are to be allotted: one for-B&stt and the other for Nor$outh.

Total number of PEs is the multiple of these two values. In the presentt@mseimber of
processors allotted to run reconfigurations is 512 (No. of PEs foiViEast =16; No. of PEs
for North-South = 32).

Input sto Reconfiguration:

The analysidile at horizontal resolutiorof 17 km (N768L70) generad bythe 4D-VAR
Data assimilation system

Outputs of Reconfiguration:

The econfigured analysis file at horizontal resolutair83 km (N400L70)

2.3.4 ETKF

The objective of ETKF is to provide initial conditions for NEPS forecasts. It generates
global perturbations fowind, temperature, humidity and pressure fields for the 44 ensemble
members.In NEPS system, the perturbations generated by ETKF are combined with the
operational 4EVAR analysis so that a full Ensemble Kalman Filter (EnKF) analysis is not
required. Implerantation of EnKF is computationally expensive whereas calculation of
transformation matrix in ETKF, which updates only the initial perturbation instead of
updating the analysis, is much cheaper. So ETKF provides an economic way to exploit many
benefits ofENKF without being computationally expensive. The perturbations are added to
the reconfigured analysis using the Incremental Analysis Update (IAU) scheme (Clayton,
2012)within theUM. The control forecast does not need any input perturbation from ETKF.

It uses only the reconfigured analysis at N4AOOL70 resolution as its initial condition.
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ETKF receives the forecast perturbations from the previous forecast cycle (T+6 state
for the perturbed ensemble members) as input. The forecast perturbations vadicheivth
analysis time are mixed and scaled by ETKF to generate new set of mutually orthogonal
analysis perturbations. The mixing of the evolved forecast perturbations is performed by the
transformation matrix. The analysis perturbations provide a 44 dinmahgEpresentation of
the analysis error covariance matrix of an optimal data assimilation system. The calculation
of transformation matrix requires the model equivalent of each observation for each ensemble
member, to provide the estimates of backgroundettainty in observation space. These
‘pseudeobservations' are calculated by the Observation Processing System and provided to
the ETKF (modelobs).

If the ensemble size igery smallthe background error covariance becomes large and
the impact of obsertin is overestimated. This leads to unrealistically small analysis
perturbations generated by ETKF. In order tarder this problem two methods are adopted:

(1) horizontallocalization(Houtekamer and Mitchell 1998) and (2) covariance inflation.

In hoiizontal localizationa numberof equally spaced localization cees$ (currently
92) are definedaround the globe. For each centee local transformation matrix is
constructed by using the observations within a radius of 2000 km. Interpolation between the
local transformation matricedor the nearest localization centres gives the final
transformation matrix for each grid pairh this waylonger range correlations in the error
covariances areut off at a specified distanc&kank of the analysis covanee estimate also
gets improved by horizontal localization.

Further improvement in ensemble spread is made by multiplying the raw
transformation matrix of each region by a region specific inflation factor. This inflation factor
gets updated at each assamion cycle. The inflation factor of the previous cycle is
multiplied by the ratio of the root mean square (RMS) error of the ensemble mean with
respect to observation to the RMS spread of the ensemble forecast. OPS provides the
ensemble mean and sprdathr ough fAmodel obso ( obsferecas§t i on

files and observation through varobs files processed against the control forecast

12
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Inputsto ETKF:

i) 44 modelobs files corresponding to the perturbed ensemble members and Ifil@robs
corresponding to the control member from OPS run

i) 45 ppl files from short forecast of previous cycle containing the forecast fields: wind,
potential temperature, exner pressure and specific humidity.

iii) Inflation factor obtained from the ETKF run of theevious cycle

Outputs of ETKF:
i) 44 Analysis perturbations

i) Inflation factor

2.3.5 Short forecast

The UM short forecast run (N400L70) for 45 members (1 control and 44 perturbed) uses the
reconfigured 4BVAR analysis of operational deterministic UM (N768L78and initial
condition perturbations generated from ETKF at all assimilation cycles (00, 06,12 and 18
UTC) to make 6hr ensemble short forecasts for the next cycle. All the 45 members are
allotted 10 nodes (10x1processors) each on Bhaskara Hi®eCperformthe short forecast

run. The UM model runis controlledthrough theUNIX scripts which take input from
namelists provided by theM user interface (UMUI). The user interface is arwkdows
application based on Tcl/Tk (Tool Command Language/Toolkit fodawing). A detailed
description of UM global modalan be foundn Rajagopal et al. (2012). The output of UM
short forecast run provides the first guess for the next assimilation cycle. The pp1 field files
produced by the short forecast runs are usedTi§fFH0 generate analysis perturbations for

the next cycle
Main Input sto short forecast:

i) N40OL70 analysis reconfigured from th&®8.70 deterministic model analysis.
i) Initial condition Perturbations of wind, potential temperature, exner pressure and

specifc humidity generated by ETKF.
Outputs of short forecast:

i) The ppl fields file for ETKF containing the forecast fields: wind, potential
temperature, exner pressure and specific humidity.

i) The background field file for OPS to create varobs and modelobs files

13



2.3.6 Long forecast

All the 45 members of NEPS are integrated forwzaded orthe initial condition of 00JTC

daily to makeEPSIlong forecast of 10 days. The model configuration is same as that is used
for the short forecasun. The output of the long fecast run isetaccording to the need of

the user community. The detailed description of the long forecast products and this utilit

are given in section 3.
Main Input sto long forecast:

i) N400L70 analysig¢reconfigured from the R68L70 deterministic mdel analysis
i) Initial condition Perturbations of wind, potential temperature, exner pressure and

specific humidity generated by ETKF.

Outputsof long forecast:

i) Forecast file (in UM field files format) containing forecast fields of u, v, w,
geopoential height., MSLP, RH, T and surface pressure at 18 vertical leveld at
hour interval

i) Forecast file containing daily maximum and minimum temperatures at 2m above
surface and 24 hourly accumulated rainfall

iii) Forecast file containing surface temperature, MSL&, 2m, RH at 2m, T at 2m, U at

10m, V at 10m and accumulated rainfall at a frequency ofush
3. NEPSForecastProducts

The operationgbroducts generated from theERS areggiven in Table 4. The spatial plots are
prepared for the domain coveritt§’Sto 55 N and 68 E to 140 E.
Table 4: Operational NEPS products

Products Variables Resolution levels Freq
(hrs)
Geo-potential-Height [Ht 0.45% 0.3° 925, 850, 700, 24
500, 200 (hPa)
MSLP MSLP -do- mean sea level | 24
EPSgrams T2m, RH2m, U10m, V10m, -do- 2m, 10m, 6
MSLP, 6hrly accumulated surface,
precipitation. mean sea level
Rainfall-Probability, |Accumulated Precipitation -do- Surface 24
Ensemble-Stamps
Wind-Forecast U,V, surface pressure -do- 925, 850, 700, 24
500, 200 (hPa)




3.1Ensemble Meanand Spread

The ensemble meais a simple mean of the parameter valu# all ensemble
memberslt is calculatedo assess, orvarage, the most likely outcomehe ensemble mean
normally verifies better than the control forecaiseiny individual ensemble memUdsrcause
it smoothesut smallerscale, relatively unpredictable featusesd simply presents the more
predictable elements of the forecdsttan provieg agoodforecastguidancebut must not be

relied on its own, as it will rarely capture the risk of extreme events.

Ensemble Spreais calculated as thstandard deviation of a model output variable,
and provides a measure of the level of uncertainthenforecastThe larger the spreathe
greateris the uncertainty in the ensemble forecidtsis often plotted on charts overlaid with

the ensemble mean.
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Flgure 3:Ensemble mean and spreadJay—lOforecast of (aMSLP andGeopotentlaI
height at(b) 850hP3a (c) 500 hPa and (d) 200hRalid for 00 UTC20" Jaruary2016
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Figure 3(a) showday-10 forecast ofensemble meawalue of mean sea level
pressurdPMSL) as contours and spread MSLP as coloushading. The ensemble mean and
spread in théay-10 forecast of 500 hPa geopotential height is showRigure 3¢). The
areas of strong colosi indicate larger spread and therefore lower predictability.

It can be noted fronfrigure 3 that the spread is very large at higher latitudes and too
small over tropics. The poleard increment of spread (uncertainty) may be attributed to the
more large scale dynamical activity at higher latitudes. Bowler et al. (2008) axcessively
large spread near the poles and too small in the tropics during initial implementation of
MOGREPS. The reason behind this was attributed to the small numbers of ensemble
members (23) and to the fact that perturbation growth rate ovecdrapilow due to the
insufficiently strong effect of model uncertainty perturbation in this region. Figure 3 (b) and 3
(d) also reveal that spread is very less near the surface and largdlaofiame feature of

distribution of spread with height was adtby Bowler et al. (2007).

Figure 4: (a) Analysis, (b) Day, (c) Day3, (d) Day5, (e) Day7 and(f) Day-10 ensemble
meanforecast ofwinds (vector) and ensemble spread of wind sgebdded) at 500 hPa,
valid for00 UTC12" March, 2016

Figure 4 shows analysis and forecasts of ensemble mean wind vector and spread of
wind speed at 500 hPa tiflay-10, valid for 12" March 2016 The mean wind speed/direction

is shown by arrow length/direction and spread in the wind speed of ensemble marabers
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