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Assessment of Wind Forecasts from NWP Model  

for Indian NPP Sites 

 

Priya Singh, Sushant Kumar, Raghavendra Ashrit 

 

साराांश 

परमाणु आपात स्थिततय ों के तिए तिणणय समर्णि प्रणािी (डीएसएस) का उदे्दश्य आपातकािीि प्रबोंधक ों क  

परमाणु दुर्णटिा से उत्पन्न स्थिततय ों के बारे में सोंपूणण और समय पर जािकारी प्रदाि करिा है। डीएसएस 

विविन्न घटक ों जैसे, उत्सवजित तत् ों एिों उनका पर्ाििरण में फैलाि और जमाि, मौसम समन्धित न्धिवतर्ाों, 

जनसोंख्या ज न्धिम और सोंिावित के्षत्र पर सुरक्षात्मक कार्ों के प्रिाि की गणना करता है। सोंख्यात्मक मौसम 

पूर्ाणिुमाि (एिडबू्ल्यपी) डेटा की सटीकता सार्णजतिक मात्रा के पूर्ाणिुमाि क  प्रभातर्त करिे र्ािे कारक ों 

में से एक है। यह ररप टण िौ चयतित भारतीय परमाणु ऊजाण सोंयोंत्र (एिपीपी) िि ों पर हर्ा की गतत और तदशा 

के पूर्ाणिुमाि के तिए एिसीएमआरडबू्ल्यएफ यूतिफाइड मॉडि-ग्ल बि (एिसीयूएम-जी) के प्रदशणि का 

मूल्ाोंकि करती है। र्ह अध्यर्न िर्ि 2023 के वलए अिल वकत तथा मॉडल पूिािनुमावनत हिाओों क  ध्यान में 

रिते हुए वकर्ा गर्ा है। पूर्ाणिुमाि सटीकता का मूल्ाोंकि रैस्थिक और पररपत्र चर के तिए उपय ग की जािे 

र्ािी मािक साोंस्थख्यकीय तर्तधय ों का उपय ग करके तकया जाता है। हर्ा की गतत और तदशा के पूर्ाणिुमाि में 

मॉडि के प्रदशणि का र्ातषणक, मौसमी और समर्ाोंतरावलक पैमाि ों पर व्यर्स्थित रूप से मूल्ाोंकि तकया गया 

है। प्रथम दृष्टर्ा में अिल वकत तथा मॉडल पूिािनुमावनत पर्ि डेटा अचे्छ अतभसरण में पाए गए हैं, हािाोंतक 

इनके बीच व्यस्थिगत अोंतर के तर्तरण िे यादृस्थच्छक तु्रतट का सोंकेत तदया है। इसके अवतररक्त, र्ह अध्यर्न 

विशेर् रूप से उच्च पूिािनुमान तु्रवटर् ों िाले एनपीपी साइट ों पर पूिािग्रह सुधार की प्रिािशीलता का िी 

आकलन करता है, वजससे हिा की गवत के पूिािनुमान में सुधार ह । 

 कीवर्ड: परमाणु ऊजाण सोंयोंत्र, एिडबू्ल्यपी मॉडि, परमाणु आपातकाि, सतही हर्ाएों , हर्ा का पूर्ाणिुमाि, 

पूिािनुमान तु्रवट सुधार 
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Abstract 

The purpose of a Decision Support System (DSS) for nuclear emergencies is to furnish emergency 

managers with thorough and timely information regarding situations arising from a nuclear 

accident. The DSS integrates various elements, including the released source term, meteorological 

conditions, dispersion and deposition in the environment, and calculates the affected areas, 

population exposure, and the impact of protective actions on potential dose. The accuracy of 

Numerical Weather Prediction (NWP) data is among the factors influencing the forecast of public 

dose. This report evaluates the performance of NCMRWF Unified Model-Global (NCUM-G), for 

wind speed and direction forecasts at nine selected Indian Nuclear Power Plant (NPP) sites. The 

study has been performed considering the measured and predicted hourly winds for the year 2023. 

Forecast accuracy is evaluated using standard statistical methods used for linear and circular 

variables. The performance of the model in forecasting wind speed and direction has been 

systematically evaluated on both annual, seasonal and temporal scales. The measured and 

predicted wind data is found to be in good convergence, though the distribution of individual 

differences between measured and predicted wind data indicated random error. Additionally, the 

study also assesses the effectiveness of bias correction, leading to improved wind speed 

forecasting, particularly at the NPP sites with higher forecast errors. 

 Keywords: Nuclear Power Plant, NWP Model, Nuclear Emergency, Surface winds, Wind 

Forecasts, Bias Correction 
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1. Introduction:  

 A Decision Support System (DSS) for nuclear emergencies is intended to provide comprehensive and 

timely information to emergency managers on an emergent situation arising from a nuclear accident. DSS 

combines the elements of released source term, meteorological conditions, dispersion and deposition in the 

environment, and estimates the affected areas, exposure of the population and the effects of protective 

actions on potential dose. The public dose forecast depends, inter-alia, on the accuracy of Numerical 

Weather Prediction (NWP) data. The National Centre for Medium range Weather Forecast (NCMRWF) 

provides the NWP forecasts to the Nuclear Power Corporation of India Limited (NPCIL) using a 

deterministic global model NCUM-G (Rajagopal et al. 2012, Kumar et al.2018, Rani et al.2019). The model 

forecast has been utilized in various sectorial application such as hydrology (Kumar et al., 2023), renewable 

energy (Kumar et al., 2022). The surface 10 m wind U and V components forecasted by NCMRWF and 

transmitted to NPCIL have been compared with observations to evaluate the degree of agreement between 

the two datasets.  The unique aspect of the NCUM-G is that it has a seamless modeling approach. The same 

dynamical core and, where possible, the same parameterization schemes are used across a broad range of 

spatial and temporal scales. The UM’s dynamical core solves compressible non-hydrostatic equations of 

motion with semi-Lagrangian advection and semi-implicit time stepping. The NCUM-G model has the 

Advanced ‘ENDGame’ (Even Newer Dynamics for General Atmospheric Modelling of the Environment) 

dynamical core of the Met office, UK. It employs the ‘Hybrid 4-D variational data assimilation system, 

which uses the ensemble forecasts of ‘NCMRWF Ensemble Prediction System (NEPS)’. The model has 

horizontal grid resolution of ~12 km and 70 hybrid vertical levels resolving the atmosphere up to 80km. 

Full details on the NCUM-G model can be found in Kumar et al (2020). This model is operationally used 

for generating forecasts out to 10 days based on 00 and 12 UTC initial conditions. The forecasts are used 

for various applications in diverse sectors ranging from agriculture, renewable energy, early warning for 

disasters etc. In the inter-comparison study, observed 10m wind speed and direction were compared with 

the forecasts of wind speed and direction for Indian Nuclear Power Plant (NPP) sites during the period 

October-2022 to September-2023. NWP data was available with resolution 0.125ᵒ x 0.125ᵒ for all the 

Nuclear Power Plant (NPP) Sites. Inter-comparison was conducted for Day-1 to Day-5 forecast lead times. 

Observed and predicted wind speed and wind direction at 10 m height were used for inter-comparison. To 

derive wind speed and direction, we utilized the zonal and meridional vectors (U and V) as outlined in the 

methodology section. The report provides a detailed overview of the NWP winds forecast and an approach 

of bias correction to make the forecast accurate. The paper has been organized in a way that describes 
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the NWP model details and datasets used in the study in section 2. Sector 3 highlights the technical 

details of model evaluation, the statistical metrics used, and the bias correction method. In section 

4 we have presented the model evaluation results and discussion of the study over selected NPP 

locations before and after bias correction. Finally, the results are summarized in section 5.  

2. Description of NWP Model and Datasets 

2.1 NWP Model Description  

NCMRWF Unified model (NCUM) is being used for numerical weather prediction (NWP) since 

2012. The NCUM is based on Unified Model (UM) system developed under the “UM Partnership” 

by Met Office-UK, BoM/CSIRO-Australia, KMA-South Korea, NIWA-New Zealand and 

MoES/NCMRWF-India.  It is a seamless prediction system that runs at all temporal and spatial 

scales (Kumar et al.2018). A detailed description of early versions and the initial setup of this 

model has been provided by (Rajagopal et al., 2012, George et al., 2016). This model is upgraded 

at regular intervals to facilitate new developments in terms of NWP model Physics, data 

assimilation techniques, and incorporating newly developed datasets in the data assimilation 

process. The present study is based on the recent model update made in 2018 and 2020 (Niranjan 

Kumar et al.,2022). The model has a horizontal resolution of ~ 12 km whereas it resolves the 

atmosphere up to 80 km in 70 vertical levels that include 13 levels within 1 km of the surface to 

better represent the boundary layer features. The model is initialized at every 6 h (00, 06, 12, and 

18 UTC) using the Hybrid 4D-Var data assimilation (Clayton et al.,2013) technique and produces 

short forecasts at hourly intervals for the next 9 hours.  The long forecasts are generated twice a 

day at 00 and 12 UTC of model runs for up to 240 h in which a few surface parameters such as u 

and v components of wind speed at 50 m are available at hourly intervals. This fine-resolution 

NWP model output is useful in wind power forecasting.   

2.2 Data Description  

NCMRWF model NCUM-G produced forecasts of u and v components of near surface wind speed 

at 10-m level, 1-hr time intervals from the recent time period October 2022 to September 2023. 

Model forecasts generated at 00 UTC run up to 120 h forecast length have been evaluated against 

a high-resolution model analysis. The focus of the study revolves around nine selected Indian 
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Nuclear Power Plant (NPP) sites Kaiga generating system (KGS), Madras Atomic Power Station 

(MAPS), Bhabha Atomic Research Centre (BARC), Narora Atomic Power Station (NAPS), 

Kakrapar Atomic Power Station (KAPP), Kudankulam Nuclear Power Plant (KKNPP),  Rajasthan 

Atomic Power Station (RAPS), Tarapur Atomic Power Station (TAPS), Bhabha Atomic Research 

Centre Visakhapatnam (BARCV) represented in Figure1. 

 

3. Methodology 

3.1Wind speed and Direction Statistics:  

(a) Computation of wind speed and direction 

The wind speed has been computed from U and V components representing the eastward and 

northward wind speeds respectively in a Cartesian coordinate system. 

WS = √𝑈2 + 𝑉2                                                              (1) 

 The wind direction (θ) can then be determined using the arctangent function, given by: 

θ = 𝑎𝑡𝑎𝑛2(U,V)                                                               (2) 

(b) Estimation of Wind Direction Difference:   

Wind direction difference θ = predicted wind direction – measured wind direction If θ > 180ᵒ, then 

wind direction difference θ=θ-360ᵒ If θ < -180ᵒ, then wind direction difference θ=θ+360ᵒ   

(c) Calculation of Average Wind Direction: From the sequence of N observations θi and ui, the 

mean east-west, Ve and north-south, Vn, components of the wind are:  

Ve= - 1/ 𝑁 ∑𝑈𝑖𝑠𝑖(𝜃𝑖) and Vn=- 1 /𝑁 ∑𝑈𝑖𝑐𝑜𝑠(𝜃𝑖)                                                                (3) 

Geographic wind direction with respect to true north (0=North, 90=East, 180=South, 270=West) 

that the wind is coming from is given by  

 Dirgeo =270-(atan2(Vn, Ve))                                                                                            (4)     
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 Average wind direction as discussed in this section is used for calculating hourly averaged wind 

direction for the period of inter-comparison.  

(d) Calculation of Mean Absolute Error (MAE) in wind direction:   

Wind direction difference is calculated as per the methodology given in Section (a).  

MAE in wind direction is estimated as per below equation:                        

 MAE (direction) = 1 /𝑁 ∑ min (|𝛿𝑂𝑖 − 𝛿𝐹𝑖|,|360° + 𝛿𝑂𝑖 − 𝛿𝐹𝑖|,|360° + 𝛿𝐹𝑖 − 𝛿𝑂𝑖|)𝑁        (5) 

Where δOi and δFi are observed and forecast wind directions respectively.  

3.3 Statistical measures for inter-comparison of observed and predicted  

Statistical metrics such as BIAS, MAE (mean absolute error), RMSE (root mean square error), CC 

(correlation coefficient) have been computed using the equations/formulae as follows: 

 MAE=
1

𝑛
∑ |𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖|

𝑛
𝑖=1     (6)                                          

RMSE=√
1

𝑛
∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 −  𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖)

2𝑛
𝑖=1      (7) 

CC=
∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡)𝑛

𝑖=1

√∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
2

∑ (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡)
2𝑛

𝑖=1
𝑛
𝑖=1

   (8) 

 MBE = 1/n∑ (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖=𝑛
𝑖=1 )                                  (9) 

Where, n is the length of the datasets being compared, Forecast and Observed values correspond 

to NSPS model forecast and analysis respectively, whereas Forecast and Observed represent the 

mean values of it. 

3.3 Bias correction  

NWP model forecasts face inherent challenges stemming from imperfect initial conditions, 

numerical approximations, and the simplification of numerous atmospheric processes, all 

contributing to specific biases (Cheng and Steenburgh, 2005; Coleman et al., 2010; Kalman R.E., 

1960) which are more prominent for surface and boundary-layer parameters such as winds (Cheng 

et al., 2013). This study aims to rectify the bias in the forecasts of wind speed from the NCUM- G 
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model for the period October 2023 to September 2023. This correction process involves the 

application of a technique outlined below:   

Moving Average Bias Correction (MABC): The technique adopted in this is simple and easy to 

implement in an operational environment. Its uses have been well demonstrated by (Cui et al., 

2012; Singh et al., 2020). This approach involves estimating the bias (difference between forecast 

and observation) as a weighted average of biases from the three most recent hours of available 

data. Bias correction is conducted separately for each hour in the next 6- hour forecast dataset. The 

bias has been calculated using Eq. 10.  

Bias (t) = 0.4 * b1+ 0.4 * b2 + 0.2 * b3                                           (10)  

 Where b1, b2, and b3 are the biases in the last 3 hours of forecasts. 

After estimating the bias, the wind speed forecast undergoes correction by subtracting this 

estimated bias using the Eq. 9. 

𝐹𝑏(𝑡)=F (t) - Bias (t)                                                                        (11)  

Where ‘t’ is the forecast hour, 𝐹𝑏𝑐(𝑡) denotes the bias corrected forecast, F(t) represents NCUM-

G raw forecast and Bias(t) signifies the bias calculated in equation (11).  

 

4. Results and discussions  

4.1 NWP Model Evaluation 

The focus of the study revolves around nine selected Indian Nuclear Power Plant (NPP) sites 

represented in Figure1. The model orography has also been presented in Figure1 . From the figure, 

we can infer that the NPP in Gujarat, Rajasthan and Delhi are located at relatively lower elevation 

whereas wind farms in Maharashtra and Karnataka are located at the highest elevation. The local 

topography affects the weather phenomenon which at many instances may not be well represented 

by the NWP models due to their coarser resolution.  
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Figure1: Model orography that highlights the terrain at selected Nuclear Power plant (NPP) sites. 

The NWP model output provides U and V components of winds at 10 m above ground level that 

have been used to compute the speed and direction.  The annual mean of WS and WD together 

have been represented in Figure 2. From the plots we can compare the forecast and analysis of 

these parameters at different lead times. The length of vectors and shading in the plot represents 

the wind speed whereas the orientation tells us about the direction. The plots facilitated a 

qualitative assessment of the spatial distribution of the forecasted wind vectors in comparison to 

the model analysis. We can infer the following features from the figure: (a) strong south-westerlies 

over the Arabian Sea (AS) with core winds exceeding 7 m/s, (b) south-westerlies over Bay of 

Bengal (BoB), (c) westerlies over peninsular and central India. The mean wind speeds consistently 

surpass the threshold of 4 m/s across all sites whereas specific regions within Rajasthan and 
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Gujarat exhibit even more elevated wind speeds, exceeding 5 m/s. The figure shows that the spatial 

pattern of wind speed forecast is well captured in day -1,3 and 5 lead times. However, a 

discrepancy is seen in certain regions, notably over the seas in day 3 and day 5, where a tendency 

for overestimation that increases with lead times was evident.  

 

 

Figure 2: Wind Vector Plot comparing model analysis wind vectors to forecast wind vectors for 

Day 1, Day 3, and Day 5 ahead, on an annual basis for the period October 2022 to September 2023. 

Figure 3 presents the Root Mean Square Error (RMSE) for Day 1, Day 3, and Day 5 lead time WS 

forecasts compared to the model analysis, spanning from October 2022 to September 2023. In the 

Day 1 forecast, the RMSE across most of India remains below 1 m/s, indicating generally accurate 

predictions. However, certain regions in the western part of Rajasthan exhibit slightly higher 

RMSE values, ranging up to 1.2 m/s, suggesting a moderate discrepancy between forecasted and 
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observed WS. For the Day 3 forecast, the RMSE is predominantly below 1.2 m/s across most parts 

of India, indicating relatively accurate forecasts. However, in northern India, particularly in the 

western part of Rajasthan and some areas in northern Gujarat, the RMSE exceeds 1.2 m/s, with 

values up to 1.6 m/s. This suggests a slightly larger deviation between forecasted and observed 

WS in these regions. In the Day 5 forecast, the RMSE remains below 1.4 m/s across the majority 

of India, indicating higher deviation compared to the Day 1 and Day 3 forecasts . Nonetheless, in 

the western part of Rajasthan and certain areas in northern Gujarat, the RMSE is below 1.8 m/s, 

with some regions in Rajasthan showing RMSE values exceeding 2 m/s. This indicates a notable 

deviation between forecasted and observed wind speeds, particularly in these specific areas. The 

results suggest that model forecast accuracy in the first 24 hours  (Day1) is reasonably good and 

decreases appreciably at higher lead times. 

 

Figure 3: Root Mean Square Error (RMSE) in Day 1, Day 3, and Day 5 ahead forecasts in 

comparison to model analysis, spanning the period from October 2022 to September 2023. 

To examine any seasonal dependency in WS, Figure4 shows the mean annual cycle of the analysis 

and forecast WS averaged over each of the nine NPCIL sites from October 2022 to September 

2023, for Day 1, 3, and 5 lead times. At certain sites, such as KGS, KKNPP the match at all lead 

times is notably good, suggesting better agreement between forecasted and observed wind speeds. 

The reasons for this enhanced performance at these specific sites could be attributed to various 

factors such as geographical location, and the local topography. The figure provides a 
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comprehensive overview of mean WS across seasons and years, allowing for a clear comparison 

between the sites and revealing significant seasonal patterns. The data reveals notable seasonal 

patterns, with the highest mean WS observed during the summer months May to September, which 

can be characterized as the high wind season. The findings from the analysis indicate that the Day 

1 forecast closely aligns with the model analysis, suggesting a high level of accuracy in short-term 

WS predictions. However, biases in WS forecasts become more pronounced with increasing lead 

times. Further, the study reveals that these biases are particularly prominent during the summer 

months from May to September. 

Figure4: Mean annual cycle of the observed and forecast wind speed averaged over each of the 

nine NPCIL sites during October 2022 - September 2023 for lead time Day1, Day3 and Day5. 
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The mean annual cycle of analysed and forecast WD was examined across nine NPCIL sites from 

October 2022 to September 2023, considering lead times of Day 1, Day 3, and Day 5. The analysis 

aimed to identify any seasonal dependency in wind direction and assess the accuracy of wind 

direction predictions. The results, presented in a comprehensive Figure5, allowed for a clear 

comparison between sites and revealed significant seasonal patterns. Notably, the data indicated 

that the dominant wind direction during the summer months from May to September is south 

westerly direction. The findings suggest that the five-day ahead forecast closely aligns with the 

model analysis, indicating a high level of accuracy in WD prediction even at higher lead times. 

However, slight biases in wind direction forecasts are observed for certain sites during specific 

months. For example, the NAPS site exhibited small biases in wind direction forecasts during the 

summer months from May to September, while the BARCV site showed similar biases during the 

months of March to May. Despite these minor deviations, the overall accuracy of the forecasted 

wind direction remained high across all lead times. 
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Figure 5: Mean annual cycle of the analysed and forecast wind direction averaged over each of 

the nine NPCIL sites during October 2022 - September 2023 for lead time Day1, Day3 and Day5. 

The mean diurnal variation of hourly wind speeds across the nine selected NPP sites have been 

presented in Figure 6. The data reveals a compelling pattern in the fluctuations of wind speed 

throughout a typical day. The findings indicate that the wind speeds exhibit a consistent rhythm 

with lower values during the early morning and a gradual increase through the day, peaking in the 

late afternoon. Notably, the MAPS site exhibits consistent wind speeds throughout the day, 

distinguishing it from the observed pattern. Additionally, sites such as KKNPP, MAPS, and TAPS 

display elevated wind speeds during the morning hours as well, with KKNPP recording the highest 

mean wind speed during this time. Furthermore, the analysis highlights significant differences in 

the range between maximum and minimum wind speeds over a 24-hour period, particularly 

notable in sites KGS, BARC, and KAPP. These findings provide valuable insights into the 
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temporal dynamics of wind speed across NPP sites, crucial for understanding and  refining their 

operational approaches. 

 

Figure 6: Mean diurnal cycle of the analysed and forecast wind speed averaged over each of the 

nine NPCIL sites during October 2022 – September 2023 for lead time Day1, 3 and 5. 

The WD provides a crucial input to the DSS making it an important parameter to be critically 

analysed. It helps us identify the regions to be evacuated during any nuclear emergency. In Figure 

7, the mean diurnal variation of hourly wind direction across the nine selected NPP sites has been 

presented. From the figure we infer that the diurnal variability in the wind direction is different at 

different NPP sites. Two NPP sites KKNPP and BARCV show a little variability and these sites 

are dominant by the southerly winds whereas KGS, BARC, and TAPS show relatively higher 
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variability. These three sites witness north- westerly winds in the evening. From the assessment of 

model forecasts provided in the figure we broadly observe that the diurnal variability of forecasts 

even at higher lead times are in a good agreement with the model analysis over all the sites. 

 

Figure 7: Mean diurnal cycle of the analysis and forecast wind direction averaged over each of 

the nine NPCIL sites during October2022 - September2023 for lead time Day1,3 and 5. 

The scatter plots depicting the association between analysis and forecasted (Day-1) wind speeds 

across the nine NPCIL sites from October2022 to September 2023, as shown in Figure 8, reveal a 

notably strong relationship. Each plot showcases a high level of association, as evidenced by the 

R2
 values exceeding 0.88 for all sites. This indicates a robust correlation between the analysed and 

forecasted wind speeds, affirming the accuracy and reliability of the forecasting model utilized. 

These findings underscore the effectiveness of the forecasting approach in accurately predicting 
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wind speeds at each NPCIL sites, which is essential for informed decision-making and operational 

planning. 

 

 

Figure 8: Scatter plot of observed Vs forecast hourly wind speed (m/s) averaged over each of the 

nine NPCIL sites from October 2022 to September 2023. The plots indicate very good association 

as indicated by R2 values in each panel. 

The scatter plots depicting the association between analysis and forecasted (Day 1) wind direction 

across the nine NPP sites, as shown in Figure 9, reveal a notably strong relationship. Each plot 

showcases a moderate association, as evidenced by the R2 values exceeding 0.77 for all sites except 

for the sites NAPS (.68), RAPS (.69) and TAPS (.73) where R2 values are less as compared to 

other sites. 
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Figure 9: Scatter plot of observed Vs forecast hourly wind direction (degree) averaged over each 

of the nine NPCIL sites from October 2022 to September 2023. The plots indicate moderate 

association as indicated by R2values in each panel. 

The distribution of WS across different categories was analyzed to evaluate forecast accuracy and 

identify potential biases or errors in the Day-1 forecast as shown in Figure 10. The wind speed 

categories ranged from less than 2 m/s, 2-4 m/s, 4-6 m/s, 6-8 m/s, to greater than 8 m/s. The 

analysis, depicted in Figure 10, revealed that the highest proportion, over 60%, fell within the WS 

range of 2-4 m/s, except for KKNPP at 20%, MAPS at 30%, and TAPS at 40%. Notably, KKNPP 

exhibited a distribution of high wind speeds (6-8 m/s) exceeding 40%. Conversely, less than 10% 

of the data corresponded to wind speeds below 2 m/s across most sites, except for NAPS and RAPS 
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where it was around 30%. Furthermore, these two sites showed negligible wind speeds above 6 

m/s. KKNPP stood out again with 40% of its data falling within the 6-8 m/s WS range. Importantly, 

the results concludes that the forecast distribution for each WS range closely matched the model 

analysis, indicating reliability in the forecasting approach. 

 

 

Figure 10: Frequency distribution (%) of Analysis and Forecast (Day-1) wind speed averaged 

over each of the nine NPCIL sites, spanning the period from October 2022 to September 2023.  

The box plot in Figure 11 provides a comprehensive visualization of the spread of Analysis and 

Day-1 Forecast wind speed averaged over nine NPCIL sites, during the study period[A1]. The box 
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itself represents the interquartile range (IQR), encapsulating the middle 50% of the data points, 

with the horizontal line inside indicating the median WS. Whiskers extend to the maximum and 

minimum values within 1.5 times the IQR from the upper and lower quartiles, serving as a measure 

of data variability. Notably, the figure reveals a close alignment between the average WS of Day-

1 forecast and the model analysis, underscoring the reliability of the forecasting model. However, 

slight differences in the IQR for each month suggest a small tendency for overprediction. 

Furthermore, discernible seasonal patterns emerge, with the highest mean WS occurring during 

the summer months from May to September, indicative of a distinct high wind season. This 

detailed analysis of wind speed distribution provides valuable insights into the performance of the 

forecasting model and highlights the influence of seasonal variability on wind patterns. 
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Figure 11: Box plot illustrating the Analysis and Forecast (Day-1) wind speed averaged over nine 

NPCIL sites from October 2022 to September 2023. The box represents the interquartile range 

(IQR), with the median indicated by the horizontal line inside the box. Whiskers extend to the 

maximum and minimum values within 1.5 times the IQR from the upper and lower quartiles, 

respectively. 

This study also delves into the examination of the Mean Absolute Error (MAE), as depicted in 

Figure 12, in Day 1 wind speed forecasts compared to model analysis within a designated latitude-

longitude range across nine sites. This investigation spanned the timeframe from October 2022 to 

September 2023, aiming to assess the accuracy of the forecasting model in predicting wind speed 

to these sites. The results contribute to a comprehensive understanding of the model's performance 

and its implications for forecasting accuracy in the context of NPP site monitoring and analysis. 
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The results revealed consistently low MAE values across all nine sites, with each site exhibiting 

MAE values below 1 m/s. Particularly, the sites KAPP, TAPS, NAPS, and RAPS, where the MAE 

consistently remained below 0.6 m/s across all grids. However, slight variability was observed 

among the other sites, with some grids registering MAE values above 0.7 m/s. Notably, certain 

grids within the KGS site exhibited higher MAE values exceeding 0.8 m/s. These findings 

highlight the overall reliability of the forecasting model, albeit with minor deviations observed in 

specific grid areas and sites.  

 

Figure12: MAE in Day 1 forecasts in comparison to model analysis at each grid within a latitude-

longitude box for 9 NPP sites, spanning the period from October 2022 to September 2023. 

The model performance for wind speed forecast has also been examined in terms of RMSE , as 

depicted in Figure 13. The Day 1 forecast is compared to model analysis within a designated 

latitude-longitude range across nine NPP sites from October 2022 to September 2023. The results 
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revealed consistently low RMSE values across all nine sites, with each site exhibiting RMSE 

values below 1.3 m/s. Particularly, the sites KAPP, TAPS, NAPS, and RAPS, where the RMSE 

consistently remained below 0.9 m/s across all grids. However, slight variability was observed 

among the other sites, with some grids registering RMSE values above 1.1 m/s. Notably, certain 

grids within the KGS site exhibited higher RMSE values exceeding 1.3 m/s. These findings 

underscore the overall reliability of the forecasting model, albeit with minor deviations observed 

in specific grid areas and sites.  

 

Figure 13: RMSE in Day 1 forecasts in comparison to model analysis at each grid within a 

latitude-longitude box for 9 NPP sites, spanning the period from October 2022 to September 

2023.   
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The study examined seasonal variations in wind speed forecasts averaged over nine NPP sites 

during the study period, considering lead times of Day-1, 3, and 5. Figure 14 illustrates the MAE 

in forecasted WS compared to the analysis. Notable seasonal patterns emerged, with the highest 

MAE occurring during the summer months (May to September), known as the high wind season. 

Differences in MAE throughout the months were more pronounced for Day-3 and Day-5 forecasts 

compared to Day-1. The Day-1 forecasts showed minimal variation in MAE across the months, 

particularly at the KKNP site where MAE remained nearly constant. Additionally, the MAE for 

Day-1 forecasts was consistently below 0.5 m/s across all sites, while Day-3 and Day-5 forecasts 

exhibited higher MAE values. Specifically, Day-3 forecasts had an MAE below 1 m/s for all sites, 

while Day-5 forecasts reached up to 1.5 m/s for certain sites. The results conclude that biases in 

wind speed forecasts became more pronounced with increasing lead times. These findings provide 

valuable insights into understanding seasonal variations and the impact of lead times on wind 

speed forecast accuracy, crucial for various applications including energy production and 

infrastructure planning. 
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Figure 14: Annual variation in the Mean Absolute Error (MAE) in forecast wind speed (against 

analysis) averaged over latitude-longitude for each of the nine NPP sites for lead times Day-1, 3 

and 5.  

The study examined seasonal variations in wind direction forecasts across nine NPCIL sites during 

the study period, for Day-1, 3 and 5 lead times. Figure 15 illustrates the MAE in forecasted wind 

speeds compared to analysis. Notable seasonal patterns emerged, with the highest MAE occurring 

during the winter months (Jan to April, October to September), known as low wind season. 

Differences in MAE throughout the months were more pronounced for Day-3 and 5 forecasts 

compared to Day-1. The MAE for Day-1 forecasts was consistently below 25 degrees across all 

sites except for KGS in winter season it reaches to 40 degrees , while Day-3 and Day-5 forecasts 

exhibited higher MAE values. Specifically, Day-3 forecasts had an MAE below 70 degrees for all 

sites and for Day-5 forecast MAE reached up to 95 degrees for RAPS sites. The results conclude 
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that biases in wind direction forecasts became more pronounced with increasing lead times. These 

findings provide valuable insights into understanding seasonal variations and the impact of lead 

times on wind speed forecast accuracy, crucial for various applications including energy 

production and infrastructure planning. 

 

Figure 15: Annual variation in the MAE in forecast wind direction (against analysis) averaged 

over latitude-longitude for each of the nine NPCIL sites during October 2022-Sep 2023 for lead 

times Day-1, 3 and 5.  

The diurnal variation of MAE in hourly wind speeds across nine selected NPP sites has been 

examined, as depicted in Figure 16. The results uncovers a notable pattern in wind speed 

fluctuations over a typical day, revealing a consistent rhythm characterized by lower MAE values 

during the early morning and a gradual increase throughout the day, reaching a peak in the late 
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afternoon. Particularly, on Day 1 of the forecast, MAE remains below 0.5 m/s for all NPP sites 

except for MAPS where it reaches to 1 m/s. Specifically, Day-3 forecasts had an MAE below .9 

m/s for all sites, while Day-5 forecasts reached up to 1.2 m/s for certain sites. Moreover, the results 

highlight that MAE tends to escalate with higher lead time. These findings offer valuable insights 

into the temporal dynamics of wind speed across NPP sites  

 

 

Figure 16: Diurnal variation in the MAE in forecast WS (against analysis) averaged over latitude-

longitude for each of the nine NPCIL sites during October 2022-September 2023 for lead times 

Day-1, 3 and 5. 
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The diurnal variation of MAE in hourly WD across nine NPP sites has been investigated, revealing 

a consistent pattern in WD fluctuations over a typical day. The results show that MAE values are 

generally lower during the early morning and gradually increase throughout the day. Specifically, 

in the Day1 forecast, MAE remains below 20 degrees for most NPP sites, except for KGS, NAPS, 

and RAPS, where it reaches 40 degrees. In Day3 forecast, MAE is generally below 40 degrees, 

but exceeds this threshold for NAPS, RAPS, and BARCV. In Day 5 forecast, MAE remains below 

40 degrees for most sites, except for NAPS, RAPS, TAPS, and BARCV, where it reaches up to 60 

degrees. Additionally, the results indicate that MAE tends to increase with longer lead times. These 

findings provide valuable insights into the temporal dynamics of wind speed across NPP sites, 

which are crucial for understanding and optimizing their operational strategies. 
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Figure 17: Diurnal variation in the MAE in forecast WD (against analysis) averaged over latitude-

longitude for the nine NPCIL sites during October 2022-September2023 for lead times Day-1, 3 

and 5.  

4.2 Bias Correction 

The analysis conducted in the model verification section strongly underscores the essential need 

for bias correction in forecasting. In this section we have attempted to reduce the model biases in 

forecast wind speed adopting the moving average bias correction techniques as suggested by (Cui 

et al., 2012; Singh et al., 2020)following the methodology described in section 3.  The skill 
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assessment has been done in terms of mean bias (MB) in the wind speed. In Figure 18 the MB in 

the day 1 forecast from the model before and after bias-correction have been presented. The spatial 

variability of the error clearly shows that high wind regions such as Rajasthan and Gujarat where 

the errors in model forecasts are relatively higher are appreciably reduced. The bias correction also 

helps achieve lower errors over the NPP locations in particular RAPS and BARCV where the mean 

bias is relatively more.  This concludes that a simple bias correction technique is helpful and 

efficient aligning the wind speed forecast to the model analysis. 

 

Figure 18: Comparison of Mean Bias Error (MBE) in Day 1 forecasts before and after bias 

correction, relative to model analysis, spanning the period from October 2022 to September 2023. 
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5. Conclusions 

5.1 The spatial pattern of wind speed forecast is well captured till Day-5 forecast lead time. 

However, a discrepancy is seen in certain regions, notably over the seas in day 3 and day 5, where 

there is a tendency for overestimation that increases with lead time.  

5.2 The model forecast accuracy in the first 24 hours (Day1) is reasonably good, with a Root Mean 

Square Error (RMSE) of less than 1.4 m/s for pan-India predictions. However, it decreases 

appreciably at higher lead times. 

5.3 The wind speed data reveals notable seasonal patterns, with the highest  mean wind speeds are 

observed during the summer months May to September, which can be characterized as the high 

wind season. Further, the study reveals that biases are particularly prominent during the same time 

of high WS. 

5.4 The wind direction data also revealed significant seasonal patterns. Notably, the data indicated 

that the dominant wind direction during the summer months from May to September is south 

westerly direction. Further, the findings suggest that the Day-5 lead time forecast closely aligns 

with the model analysis, indicating a high level of accuracy in extended-range  wind direction 

predictions.  

5.5 The mean diurnal variation of hourly wind speed exhibits a consistent pattern  with lower 

values during the early morning and a gradual increase through the day, peaking in the late 

afternoon.  

5.6The diurnal variability of wind direction varies across the NPP sites and model forecast are 

reasonably good even at higher lead times. 

5.7 The scatter plots depict a high level of association between analysis and forecasted (Day 1) 

wind speed and direction, as seen by the high values of R2 values exceeding 0.88 and 0.68 

respectively for all sites. This robust correlation confirms the accuracy and reliability of the utilized 

forecasting model. 

5.8 The Day-1 forecast distribution for each wind speed range closely matched the model analysis, 

indicating reliability in the forecasting approach. 
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5.9 The Day-1 wind speed forecasts compared to model analysis revealed consistently low MAE 

and RMSE values across all grids for all nine NPP sites, with each site exhibiting MAE values 

below 1 m/s and RMSE values below 1.3 m/s. 

5.10 The annual variation in MAE in Day-1 wind speed forecasts compared to model analysis 

averaged over latitude-longitude for nine Nuclear Power Plant (NPP) sites revealed consistently 

low MAE below 0.5 m/s across most NPP sites, while Day-3 forecasts had an MAE below 1 m/s 

for all sites, while Day-5 forecasts reached up to 1.5 m/s for certain sites. 

5.11 The annual variation in MAE in Day-1 wind direction forecasts compared to model analysis 

averaged over latitude-longitude for nine Nuclear Power Plant (NPP) sites revealed consistently 

low MAE below 25 degrees across most NPP sites, while Day-3 forecasts had an MAE below 70 

degrees for all sites and for Day-5 forecasts MAE reached up to 95 degrees for certain sites.  

5.12 The diurnal variation in MAE in Day-1 wind speed forecasts compared to model analysis 

averaged over latitude-longitude for nine Nuclear Power Plant (NPP) sites revealed consistently 

low MAE below 0.6m/s across most NPP sites, while Day-3 forecasts had an MAE below .9 m/s 

for all sites, while Day-5 forecasts reached up to 1.2 m/s for certain sites. 

5.13 The diurnal variation in MAE in Day-1 wind direction forecasts compared to model analysis 

averaged over latitude-longitude for nine Nuclear Power Plant (NPP) sites revealed consistently 

low MAE below 20 degrees across most NPP sites, while Day-3 forecasts had an MAE below 40 

degrees for all sites and for Day-5 forecasts MAE reached up to 60 degrees for certain sites.  

5.14 Moving average bias correction technique significantly reduces errors in model forecasts, 

particularly in high wind regions like Rajasthan and Gujarat. Moreover, it leads to lower errors at 

NPP locations, especially RAPS and BARCV, where mean bias is more pronounced. 

Limitations 

The report thoroughly examines the performance of NCUM-G in forecasting wind speed and 

direction, highlighting the importance of implementing bias correction for accurate forecasts. We 

have introduced a straightforward approach and achieved satisfactory results in bias correcting 

wind speed. However, we have not addressed wind direction, which necessitates a distinct 

methodology due to its angular nature. Additionally, we plan to explore a more advanced technique 
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utilizing machine learning algorithms. Another approach we intend to explore involves bias 

correction of both the u and v components of winds, leading to improved forecasts of wind speed 

and direction crucial for the decision support system (DSS) during any nuclear emergency. 

Authors Contribution: The report was conceptualized and supervised by Dr. Raghavendra 

Ashrit. Data Analysis, Methodology, and write up by Priya Singh. The report was reviewed and 

edited by Sushant Kumar. 
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