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साराांश 

मॉडल पूर्वानुमवन ों में व्यर्स्थित पूर्वाग्रह, वर्शेष रूप से र्षवा जैसे महत्वपूर्ा चर में, प्रभवर् अध्ययन में 

उनके प्रत्यक्ष उपय ग में बवधव डवलते हैं, पररर्वमस्वरूप, अर्ल कन ों के सवपेक्ष मॉडल आउटपुट क  

कैवलबे्रट करने के वलए कई सवोंस्थिकीय पूर्वाग्रह-सुधवर दृविक र् वर्कवसत वकए गए हैं। इस सोंदभा में, 

यह अध्ययन रै्विक नेशनल सेंटर फॉर मीवडयम-रेंज रे्दर फ रकवस्थटोंग (रव.म.अ.मौ.पू.कें .) यूवनफवइड 

मॉडल (एन.सी.यू.एम.-जी) र्षवा पूर्वानुमवन ों क  बेहतर बनवने में अनुभर्जन्य और पैरवमीवटि क द न ों तरीक ों 

के आधवर पर वर्वभन्न क्वोंटवइल मेथड्स (कू्य.एम.) पूर्वाग्रह-सुधवर तकनीक ों की दक्षतव वनधवाररत करने कव 

प्रयवस करतव है, मवनसून सीजन (जून से वसतोंबर, जे.जे.ए.एस.) 2022 के दौरवन मुोंबई (बी.ओ.एम.) के्षत्र 

में। यह िवन एकीकृत बवढ़ चेतवर्नी प्रर्वली (आई.एफ.एल.ओ.डबू्ल्य.एस.) कव समथान करने के वलए 

उले्लखनीय है, ज  भवरत सरकवर के पृथ्वी वर्ज्ञवन मोंत्रवलय द्ववरव शुरू की गई एक महत्वपूर्ा पहल है, ज  

बवढ़ जैसी आपदवओों के दौरवन त्वररत सूचनवएों  और मवगादशान कव एक आर्श्यक स्र त है। अनुभर्जन्य 

कू्य.एम. दृविक र् मवत्रवओों क  समवय वजत करने, बीओएम िवन पर देखे गए सोंचयी वर्तरर् के सवथ 

कैवलबे्रटेड र्षवा क  बवरीकी से सोंरेस्थखत करने में बेहतर प्रदशान करतव है। हवलवाँवक, पैरवमीवटि क कू्य.एम. 

वर्वधयवाँ अत्यवधक र्षवा की घटनवओों के दौरवन र्षवा क  प्रभवर्ी ढोंग से अोंशवोंवकत करने की क्षमतव प्रदवशात 

करती हैं। इस प्रकवर, यह कवया र्षवा पूर्वानुमवन ों की सटीकतव क  बढ़वने में कू्य.एम. दृविक र् की 

प्रभवर्शीलतव क  प्रकट करतव है, ज  शहरी बवढ़ मॉडल की प्रगवत के वलए महत्वपूर्ा है। 

 

Abstract 

Systematic biases in model forecasts, especially in crucial variables like precipitation, hamper 

their direct use in impact studies, consequently, several statistical bias-correction approaches 

have been developed to calibrate model outputs relative to the observations. In this context, 

this study endeavors to determine the efficiency of various Quantile Methods (QM) bias-

correction techniques based on both empirical and parametric methods in improving the Global 

National Centre for Medium-Range Weather Forecasting (NCMRWF) Unified Model 

(NCUM-G) precipitation forecasts over Mumbai (BOM) region during monsoon season (June 

to September, JJAS) 2022. This location is noteworthy for supporting the Integrated Flood 

Warning System (iFLOWS), a vital initiative launched by the Ministry of Earth Sciences, 

Government of India, which is an essential source of prompt notifications and guidance during 

catastrophes like floods. The empirical QM approach outperforms in adjusting quantiles, 

aligning calibrated precipitation closely with the cumulative distribution observed at the BOM 

location. However, parametric QM methods demonstrate potential in effectively calibrating 

precipitation during extreme rainfall events. Thus, this work reveals the effectiveness of QM 

approaches in enhancing the accuracy of precipitation forecasts, which is crucial for the 

advancement of urban flood models.    
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1. Introduction 

India has experienced a significant rise/increase in the frequency, variability, and intensity of 

extreme rainfall events in recent decades, which have been accompanied by widespread flood-

like conditions and catastrophic losses of life (Rajeevan et al., 2008, Kulkarni et al. 2020, 

Krishnan et al. 2020). For instance, the extreme rainfall events that occurred in December 2015 

over Chennai (Boyaj et al., 2018) and in July 2005 over Mumbai (Jenamani, et al., 2006; Kumar 

et al., 2008) were disastrous and unprecedented. In addition, Kerala state experienced flood in 

August 2018 that was unprecedented in the record of the past 66 years (Mishra and Shah, 2018; 

Mishra et al., 2018; Lyngwa and Nayak, 2021). Indian Summer Monsoon Rainfall (ISMR) 

during June–September (JJAS) accounts for 70% of the total rainfall, and the large variability 

in ISMR at multiple time-scales significantly affects the lives of numerous people and the 

agriculture sector over the subcontinent (Webster 1998; Gadgil 2003). Among the rainfall 

coherent regions, India's western coast experiences heavy rainfall. Mumbai, which is located 

on the west coast, has a history of flooding during extreme rainfall events. The city experienced 

massive floods in July 2005, 2017, and most recently in 2022. Thus, the prior information on 

urban floods caused by extreme rainfall is essential to prevent associated social and economic 

risks in this climate sensitive location. 

To that purpose, the Ministry of Earth Sciences (MoES), the Government of India (GoI), in 

collaboration with the Municipal Corporation of Greater Mumbai (MCGM), has introduced an 

integrated flood warning system, iFLOWS. Mumbai is the second Indian city to have such a 

system after Chennai. The iFLOWS system consists of seven modules, including a decision 

support system, vulnerability, risk, flood, inundation, dissemination, and data assimilation. The 

Geographic Information System (GIS) is used as the flood warning system. This system 

comprises numerical weather prediction (NWP) models from the National Centre for Medium 
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Range Weather Forecasting (NCMRWF), the India Meteorological Department (IMD), and 

observations from the rain gauge network stations. 

With the advancement of technology, NWP models have undergone significant upgrades 

during the last few decades, enabling high-resolution weather forecasts However, the model's 

forecasts often reveal systematic errors in comparison to observations, particularly for essential 

variables such as precipitation, which have a significant impact on society (Cannon et al., 2015; 

Munday and Washington, 2018). Thus, correcting the model errors is crucial, in order to utilize 

the NWP forecasts effectively for decision-making applications pertaining to flood risk 

management. 

The aim of this report is to assess various quantile mapping bias correction (QMBC) methods 

that are widely acknowledged for outperforming other approaches (Teutschbein and Seibert, 

2012; Maraun and Widmann, 2018; Kim et al., 2019), in improving rainfall forecasts of the 

Global National Centre for Medium Range Weather Forecasts (NCMRWF) Unified Model 

(NCUM-G) operational model over the Mumbai region supporting iFLOWS program of 

MoES. 

 

2. Study area and Data 

2.1. Study area 

In this study, we considered the urban city -- Mumbai (BOM), which is the country's most 

populous coastal metropolitan city located on India's western coast (see Fig.1). The motivation 

behind choosing Mumbai city is that this region witnessed several extreme rainfall events in 

recent decades (see Fig.2). In general, BOM has a humid tropical monsoon climate with a 

significant impact from southwest monsoon. During the southwest monsoon, Mumbai, which 

is on the windward side of the Western Ghats of India, experiences heavy rainfall due to the 
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orographic effect. Additionally, several studies suggested that offshore vortices, depressions in 

the Arabian Sea, and mid-tropospheric cyclones (MTC) also play a vital role in the 

production/generation of heavy rainfall over Mumbai region (Rao 1976, Miller and 

Keshvamurthy 1968, Krishnamurti and Hawkins 1970, Ayantika et al. 2018). Thus, accurate 

precipitation predictions over the BOM are critical to supporting decision-making applications 

for flood risk management. 

 

 

Fig.1. Map showing the location examined in the study. 
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Fig. 2. Frequency of the extreme annual rainfall (>64.5mm/day) over the Mumbai, 

Santacruz location based on the IMD station data during 1979-2019. 

 

2.2. Data 

In this study, a high-resolution Indian Monsoon Data Assimilation and Analysis (IMDAA) 

reanalysis for the period 1979-2019 (Rani et al., 2020, 2021), IMD observed station-based 

dataset from 1979 -2019 (Jenamani, et al., 2006), and the NCUM-G operational forecast dataset 

for 2022 (Sumit Kumar et al., 2020) are used. These datasets were utilized to create the BC 

model using various statistical methods, as well as for the model’s training and testing phase 

(for details see Niranjan Kumar et al., 2022). The NWP dynamical core parameterization 

techniques used to produce the IMDAA reanalysis dataset and the NCUM-G are relatively 

similar. As they use the same model physics, IMDAA can be used to efficiently correct NCUM-

G real-time forecasts. It is also worth noting that the calibration procedures correct the model's 

systematic biases, which are equivalent to several years of improvement to the basic model. 

Further, to evaluate the real-time application of the calibration methods, the BC model is 

applied to the NCUM-G operational forecast for improving/enhancing the rainfall forecast at 

local scale, particularly, at Mumbai for JJAS season. 
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3. Methodology 

Statistical BC approaches establish a functional relationship between simulated and observed 

variables over some historical period, which is subsequently used for the model projections 

(Niranjan Kumar et al., 2022). A brief description of the various quantile approaches used in 

this study is given below. 

3.1. Empirical Quantile Method (EQM) 

The EQM is a non-parametric BC method that corrects the mean, standard deviation 

(variability), and shape errors by mapping the quantiles of the simulated cumulative 

distribution function (CDF) to those of the observations through an empirical transfer function 

(Boѐ et al. 2007; Déqué, 2007; Amengual et al., 2012, Gudmundsson et al. 2012; Niranjan 

Kumar et al., 2022).   

Let 𝑐𝑎𝑙 represents the calibrated precipitation obtained after the bias correction and 𝑜𝑏𝑠 be the 

observed precipitation. Then the calibrated precipitation for the CDF’s  𝑖𝑡ℎ ranked value is 

expressed as  

𝑐𝑎𝑙𝑖 = 𝑜𝑏𝑠𝑖 + 𝛿̅ + 𝛿𝑖
′
          (1) 

where 𝛿𝑖 is defined as the difference between control (𝑐𝑡𝑙𝑖) and future (𝑓𝑢𝑡𝑖) raw simulated 

precipitation, i.e., 𝛿𝑖 = (𝑓𝑢𝑡𝑖 − 𝑐𝑡𝑙𝑖). Then, the mean regime shift (𝛿̅) can be expressed as   

𝛿̅ =  
∑ 𝛿𝑖

𝑁
𝑖=1

𝑁
   and the corresponding deviation from this shift i.e., 𝛿𝑖

′ =  𝛿𝑖 −  𝛿̅.  

This method, apart from being simple and non-parametric, has also proved to be effective in 

comparison to other distribution and scaling BC approaches (Boé et al. 2007, Gudmundsson et 

al. 2012). However, instabilities arise at higher quantiles (Gudmundsson et al., 2012; Gutjahr 

and Heinemann, 2013). In addition, this method also relies on many degrees of freedom, which 

results in non-stationary for future time periods (Gutjahr and Heinemann, 2013). Thus, we are 
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also considering parametric BC methods as discussed below, which rely on a lesser degree of 

freedom. 

3.2. Parametric Quantile Method (PQM) 

The PQM is a parametric BC method that uses theoretical distribution instead of empirical 

distribution. This method adjusts the theoretical CDF of the simulated output onto the 

corresponding observed distribution through a parametric transfer function (i.e., two-parameter 

gamma distributions) (Niranjan Kumar et al., 2022; Piani et al., 2010). The probability density 

function (𝑦) of the gamma distribution is: 

𝑦 = 𝑓(𝑥|𝜉, 𝜎) =  
1

𝜎𝜉Γ(𝜉)
𝑥𝜉−1𝑒

−𝑥

𝜎           (2) 

Where Γ(. ) denotes the gamma function. 𝜉, 𝜎 are the shape and scale parameters of the gamma 

distribution, respectively. 𝑥 is the normalized daily precipitation.  

The limitation of PQM method is that there is no restriction on the upper limit resulting in 

possible false alarms for the extreme rainfall events (Gutjahr and Heinemann, 2013). Therefore, 

in this study, we used a new method based on the gamma distribution combined with 

Generalized Pareto Distribution (GPD), which is further discussed below.  

3.3. PQM based on gamma and Generalised Pareto Distribution (GPQM) 

The GPQM is also a parametric BC method based on the combination of gamma and 

Generalized Pareto Distribution (GPD) (Niranjan Kumar et al., 2022). The probability density 

function (pdf) of GPD is expressed as (Coles 2001) 

𝑦 = 𝑓(𝑥|𝜉, 𝜎, 𝜃) =  (
1

𝜎
) (1 +

𝜉(𝑥−𝜃)

𝜎
)

−1−
1

𝜉
          (3) 

𝑓𝑜𝑟 𝜃 < 𝑥, 𝑤ℎ𝑒𝑛 𝜉 > 0, 𝑜𝑟 𝑓𝑜𝑟 𝜃 < 𝑥 < 𝜃 −
𝜎

𝜉
 𝑤ℎ𝑒𝑛 𝜉 < 0  
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where, 𝜉 ≠ 0, 𝜎, 𝑎𝑛𝑑 𝜃 represents the shape, scale, and threshold parameter of GPD, 

respectively.  Here, the values lesser than 95th percentile are assumed to follow gamma 

distribution, while GPD for values above the 95th percentile. Therefore, the GPQM method can 

be constructed as 

𝑦 =  {
𝑓𝑜𝑏𝑠,𝑔𝑎𝑚𝑚𝑎

−1 (𝑓𝐼𝑀𝐷𝐴𝐴,𝑔𝑎𝑚𝑚𝑎),       𝑖𝑓 𝑥 < 95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒

𝑓𝑜𝑏𝑠,𝐺𝑃𝐷
−1 (𝑓𝐼𝑀𝐷𝐴𝐴,𝐺𝑃𝐷),       𝑖𝑓 𝑥 > 95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒

          (4) 

 

The methodology adopted here comprises calibrating and testing various quantile methods 

described in the flow diagram (see Fig. 3). The observed station data from IMD and IMDAA 

reanalysis data of the closest grid to BOM location has been considered for the assessment. 

Overall, we have 41-years (i.e., 1979-2019) of daily precipitation data in common from 

observations and reanalysis. Hence, we have used the whole 41-years of the data for training 

and tested the model for the year 2022. A more detailed discussion can also be found from 

Niranjan Kumar et al., 2022. Furthermore, the calibration methods are utilized to bias-correct 

the real-time operational NCUM-G forecasts.  
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Fig.3. Flow diagram of the methodology adopted in this study.  

The skill of different quantile BC methods is assessed by categorical verification scores such 

as the probability of detection or hit rate (POD), false alarm ratio (FAR) and Equitable Threat 

Score (ETS). The POD quantifies the fraction of actual occurrences of an event that were 

successfully forecasted with a score of one indicating a perfect hit rate. While the FAR 

quantifies the portion of occurrence of an event in forecasts that were indeed wrong. The ETS 

is particularly valuable to evaluate deterministic forecasts and often used to verify the rainfall 

in numerical weather prediction models, since it heavily penalises the constant and purely 

random forecasts (Gandin and Murphy, 1992). ETS measures the fraction of observed and/or 

forecast events that were correctly predicted, adjusted for hits associated with random chance.  
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4. Results and Discussions 

4.1. Assessment of QM approaches for NCUM-G forecasts 

In this section, we first discussed the empirical cumulative distribution function (cdf) pertaining 

to the BOM location. Fig.4 illustrates the JJAS seasonal precipitation cdf from the IMD station 

data (OBS), NCUM-G Day-01 raw forecast (NCUMraw), and bias-corrected Day-1 forecast 

precipitation obtained using EQM (NCUMeqm), PQM (NCUMpqm), and GPQM (NCUMgpqm) 

for the year 2022. The precipitation amount above 10 mm/day is higher in NCUMraw dataset. 

Despite having a high spatial resolution, the significant biases in extreme rainfall intensities of 

NCUMraw compared to the IMD station dataset are evident, which hamper the practical 

applicability of NCUM-G in local and regional-scale hydrology, and flood-related applications. 

Therefore, correcting/rectifying these biases is essential prior to utilizing them for urban flood 

forecasting applications. For this, we assess the cdf using various bias correction methods 

applied to the NCUM-G precipitation data following the procedures discussed in Section 3. 

The calibrated precipitation from different QM approaches matches well with the OBS for the 

higher thresholds (Fig. 4).  

To get further insight into the effectiveness of different QM methods in bias-correcting the 

NCUM-G precipitation forecasts, we validate the calibrated precipitation obtained using 

different QM approaches with the IMD station dataset.  For this, we firstly took the NCUM-G 

Day-01, Day-03, and Day-05 precipitation forecast for the year 2022 during the southwest 

monsoon season. Further, to calibrate the NCUM-G precipitation forecasts for the year 2022, 

we used the IMDAA and station based IMD reanalysis datasets from 1979 to 2019 during 

southwest monsoon seasons (June-September for BOM region) based on monthly quantile 

approach as discussed earlier (see Methodology). Fig. 5 shows the validation of Day-01 daily 

precipitation from NCUM-G raw forecasts (NCUMraw) with IMD station-based dataset (OBS) 

over BOM location for the summer monsoon season. In addition, the calibrated precipitation 
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from different QM approaches based on empirical methods is also presented in Fig. 5a 

(NCUMeqm), and parametric methods in Fig. 5b, c (NCUMpqm, NCUMgpqm). The time series of 

Day-01 daily precipitation at the BOM location reveals that the NCUMraw is missing numerous 

heavy rainfall events. For example, if we assume 50mm/day and above events that come under 

heavy to extreme rains, there are nearly 14 events observed over BOM location during the 

southwest monsoon season. The NCUMraw correctly predicted 4 events while the empirical 

method is able to correct 5 events that were missed in raw forecasts (Fig. 5a).  However, the 

parametric methods, specifically, the GPQM is able to predict all the ten events that were 

missed in raw forecasts (Fig. 5c). Similarly, with forecast lead times, the daily rainfall time 

series shows that the raw forecasts underestimate the actual observed rainfall, while the 

calibrated methods rectify those underestimations relative to the NCUMraw during heavy 

rainfall events (see Fig. 6 and 7). 

 

 

Fig.4. The cdf of daily precipitation from the IMD station dataset (OBS), raw NCUM-G 

Day-01 forecast precipitation (NCUMraw), bias-corrected Day-01 forecast precipitation 

obtained using EQM (NCUMeqm), PQM (NCUMpqm), and GPQM (NCUMgpqm) during the 

summer monsoon (June–September, 2022) over BOM. 
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Fig. 5. Time series of daily precipitation from IMD station dataset (OBS), raw NCUM-G 

Day-01 forecast (NCUMraw), and bias-corrected Day-01 forecast obtained using (a) 

empirical quantile methods (EQM, [NCUMeqm]), (b) parametric quantile method based 

on gamma distribution (PQM, [NCUMpqm]), and (c) PQM based on gamma and GPD 

(GPQM, [NCUMgpqm]) during the summer monsoon (June–September, 2022) over BOM. 

 

 

Fig. 6. Same as Figure 5, but for Day-03 forecast. 
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Fig. 7. Same as Fig. 5, but for Day-05 forecast. 

 

In order to assess how well the QM approaches bias-correct the raw forecasts in different lead 

days, the skill of different quantile BC methods is assessed by categorical verification scores 

(i.e., POD, FAR, and ETS) and are displayed in Figures 8 and 9. The POD, FAR, and ETS 

scores are computed for moderate (i.e., at 15.6mm/day threshold) and heavy (i.e., at 

64.5mm/day threshold) rainfall events at different lead times over BOM. The POD and ETS 

from calibrated precipitation clearly show an improvement relative to the NCUMraw. For 

instance, the magnitude of POD and ETS scores of bias-corrected forecast is higher for 

moderate and heavy rainfall events (i.e., >15.4 mm/days and >64.5mm/day) in all forecast lead 

times over the BOM region (Fig. 8 and 9). Furthermore, as the lead time increases the 

performance of the calibrated methods is relatively better than the raw forecasts (Fig. 8 and 9). 

However, one of the limitations of the POD scores is that it is susceptible to the number of hits 

ignoring the false alarms. Thus, we have also shown the FAR score in Figures 8(b) and 9(b). 

The FAR is defined as the occurrence fraction of events for which the event did not occur, and 

hence a perfect FAR score is zero. In Day-01 to Day-04 forecasts, there is an overestimation 
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of false alarms by different QM approaches in case of moderate to heavy rainfall events. 

However, the overestimation of moderate to heavy rainfall events in raw NCUM-G 

precipitation (NCUMraw) is slightly improved with forecast lead time, as we can see there is a 

reduction in FAR (Figs. 8(b) and 9(b). Hence, the verification analysis suggests that the 

quantile methods have significantly improved the detection of the local extreme rainfall events. 
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Fig.8.  The categorical verification scores (a) the probability of detection (POD), (b) false 

alarm ratio (FAR), and (c) Equitable Threat Score (ETS) from the raw (NCUMraw) and 

calibrated rainfall using different QM approaches at the BOM location for moderate 

rainfall events. 
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Fig.9. The categorical verification scores (a) the probability of detection (POD), (b) false 

alarm ratio (FAR), and (c) Equitable Threat Score (ETS) from the raw (NCUMraw) and 

calibrated rainfall using different QM approaches at the BOM location for heavy rainfall 

events. 

 

4.2.  Real time implementation of BC approaches for Mumbai during July 2023  

 

The Operational implementation of the various quantile mapping bias correction (QMBC) 

approaches to NCUM-G precipitation forecasts has been made. We have chosen two heavy 

rainfall cases as reported by IMD for this verification analysis. Here, we verify the heavy 

rainfall events that occurred on 21st July 2023 and 26th July 2023, to investigate how the bias-

corrected rainfall derived using different QM methods improved such events at the BOM 

location. Fig. 10 illustrates the 21st July 2023 rainfall event in different lead forecast times. As 

we can see, on 21st July 2023, the observed rainfall exceeded 100mm/day, while NCUMraw 
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exhibited a substantial underestimation of this event. The calibrated precipitation from various 

QM approaches, specifically, the GPQM demonstrates significant enhancement, ranging from 

59 to 96.3 mm/day and maximum magnitude in Day-03 forecasts. Similarly, Fig. 11 shows 

another heavy rainfall event that occurred on 26th July 2023 over BOM. Mumbai experienced 

heavy rainfall surpassing 100mm/day on 26th July 2023 as evident from the observation. The 

NCUMraw underestimated this event with the magnitude ranging from 8.49 to 31.48mm/day in 

Day-05 to Day-01 forecasts, respectively. In contrast, all the parametric methods show an 

improvement in forecasting this event in Day-01 to Day-03 forecasts, with magnitudes closely 

matching the observed rainfall in Day-01 forecast. In the Day-05 forecast, this event is missing 

in NCUMraw. One possible reason for this absence could be the model's spatial dislocation of 

this synoptic event in its forecasts. Moreover, the calibrated rainfall from different QM 

techniques does not even predict the rainfall. It's worth highlighting that the statistical 

adjustment via QM relies on historical quantiles, making it challenging to bias-correct highly 

specific mesoscale events associated with substantial rainfall. Nevertheless, it remains crucial 

to correct biases in such specific events and an alternative for accurately identifying such 

forecasts is through the use of BC techniques based on synoptic events. 
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Fig.10. Time series of daily precipitation from NCUM-G raw forecast precipitation 

(NCUMraw), bias-corrected precipitation forecast obtained using EQM (NCUMeqm), PQM 

(NCUMpqm), and GPQM (NCUMgpqm) on 21st Jul 2023 over BOM.  
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Fig. 11. Time series of daily precipitation from NCUM-G raw forecast precipitation 

(NCUMraw), bias-corrected precipitation forecast obtained using EQM (NCUMeqm), PQM 

(NCUMpqm), and GPQM (NCUMgpqm) on 26th Jul 2023 over BOM. 

 

 

5. Summary and Conclusions 

This report evaluates the quantile mapping bias correction (QMBC) approaches based on both 

empirical and parametric methods (i.e., EQM, PQM, and GPQM) to bias-correct the 

NCMRWF precipitation forecasts over Mumbai during the southwest monsoon of 2022. The 

IMDAA and station based IMD reanalysis datasets from 1979 to 2019 during JJAS is utilized 

for training purposes based on monthly quantile approach as discussed in methodology 

(Section 3).  
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Overall, the cdf of bias-corrected precipitation obtained from various QM approaches exhibits 

a substantial alignment with the IMD station dataset, specifically for the higher thresholds. 

Moreover, the daily rainfall time series shows that the GPQM method successfully predicts all 

the events while the raw forecasts fail to capture in all forecast lead times. The skill of calibrated 

rainfall is also verified for both moderate and heavy rainfall events. In moderate to heavy 

rainfall cases, all QM approaches have demonstrated high POD and ETS scores compared to 

NCUMraw. Further, the FAR is included in the POD skill score to account for its inclination 

toward the frequency of correct predictions. In Day-01 to Day-04 forecasts, various Quantile 

Mapping (QM) approaches tend to overestimate false alarms for moderate to heavy rainfall 

events. However, the overestimation of moderate to heavy rainfall events in NCUMraw is 

slightly improved with forecast lead time. Thus, the results clearly indicate that the rainfall data 

calibrated using QM methods outperforms raw forecasts and is better suited for regional-scale 

flood warning applications.   

Although this study provides valuable insight into the effectiveness of various QM approaches 

in improving the accuracy of precipitation forecasts, a critical aspect for the progression of 

flood models, however, it should be noted that the statistical adjustment via QM relies on 

historical quantiles, making it challenging to bias-correct substantial rainfall specifically 

associated with mesoscale events. Therefore, further analysis is warranted based on synoptical 

scale BC techniques to better understand and bias correct the extreme event forecasts at local 

scale.  
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