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Abstract Wind Power Forecasting aids grid operators in balancing supply and 

demand, reduces the reliance on fossil fuel-based backup generation, and 

helps in the efficient management of energy storage systems. NWP 

models can provide forecasts ranging from hours to several days ahead, 

making them invaluable for both operational decision-making and 

strategic planning in the wind energy sector. The accuracy of Numerical 

Weather Prediction (NWP) data is one of the critical factors influencing 

wind power forecasts. This report evaluates the performance of 

NCMRWF Unified Model-Global (NCUM-G) and -Regional (NCUM-R) 

models for wind speed forecasts at three selected wind farms. The study 

has been performed considering the observed and predicted hourly winds 

for Jul-Dec 2023. Forecast accuracy is evaluated using standard statistical 

methods. The performance of the model in forecasting wind speed has 

been systematically evaluated on hourly, daily, and monthly temporal 

scales. The observed and forecasted wind data is found to be in good 

convergence, though the distribution of individual differences between 

observed and forecasted wind data indicated random error. Additionally, 

the study also assesses the effectiveness of bias correction, leading to 
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improved wind speed forecasting, particularly at the Wind Farm2 (WF2) 

with higher forecast errors. 
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साराांश 

पवन ऊर्जा पूवजानुमजन ग्रिड ऑपरेटर ों क  आपूग्रता और मजोंग क  सोंतुग्रित करने में सहजयतज करतज है, र्ीवजश्म ईोंधन-

आधजररत बैकअप उत्पजदन पर ग्रनर्ारतज कम करतज है, और ऊर्जा र्ोंडजरण प्रणजग्रिय ों के कुशि प्रबोंधन में मदद करतज 

है। एनडबू्ल्यपी मॉडि घोंट ों से िेकर कई ग्रदन ों तक कज पूवजानुमजन प्रदजन कर सकते हैं, र्  उन्हें पवन ऊर्जा के्षत्र में 

पररचजिन ग्रनणाय िेने और रणनीग्रतक य र्नज द न ों के ग्रिए अमूल्य बनजतज है। सोंख्यजत्मक मौसम पूवजानुमजन 

(एनडबू्ल्यपी) डेटज की सटीकतज पवन ऊर्जा पूवजानुमजन ों क  प्रर्जग्रवत करने वजिे महत्वपूणा कजरक ों में से एक है। यह 

ररप टा तीन चयग्रनत पवन फजमों पर हवज की गग्रत के पूवजानुमजन के ग्रिए एनसीएमआरडबू्ल्यएफ यूग्रनफजइड मॉडि-

ग्ल बि (एनसीयूएम-र्ी) और -रीर्नि (एनसीयूएम-आर) मॉडि के प्रदशान कज मूल्यजोंकन करती है। यह अध्ययन 

रु्िजई-ग्रदसोंबर 2023 के ग्रिए देखी गई और अनुमजग्रनत प्रग्रत घोंटज हवजओों क  ध्यजन में रखते हुए ग्रकयज गयज है। 

पूवजानुमजन सटीकतज कज मूल्यजोंकन मजनक सजोंख्यख्यकीय तरीक ों कज उपय ग करके ग्रकयज र्जतज है। हवज की गग्रत कज 

पूवजानुमजन िगजने में मॉडि के प्रदशान कज प्रग्रत घोंटज, दैग्रनक और मजग्रसक अस्थजयी पैमजन ों पर व्यवख्यस्थत रूप से 

मूल्यजोंकन ग्रकयज गयज है। पे्रग्रक्षत और पूवजानुमजग्रनत पवन डेटज अचे्छ अग्रर्सरण में पजयज गयज है िेग्रकन द न ों मॉडि ों द्वजरज 

कम आकिन की सजमजन्य प्रवृग्रि के सजथ।इसके अग्रतररक्त, अध्ययन पूवजािह सुधजर की प्रर्जवशीितज कज र्ी आकिन 

करतज है, ग्रर्ससे हवज की गग्रत के पूवजानुमजन में सुधजर ह तज है, ग्रवशेष रूप से उच्च पूवजानुमजन तु्रग्रटय ों के सजथ 

पवनफजमा2 (WF2) पर। 

 

कीवर्ड:पवनऊर्जा पूवजानुमजन, पवनफजमा, एनडबू्ल्यपीमॉडि, सतहीहवजएों , पवन पूवजानुमजन, पूवजािहसुधजर 
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Abstract 

Wind Power Forecasting aids grid operators in balancing supply and demand, reduces the 

reliance on fossil fuel-based backup generation, and helps in the efficient management of energy 

storage systems. NWP models can provide forecasts ranging from hours to several days ahead, 

making them invaluable for both operational decision-making and strategic planning in the wind 

energy sector. The accuracy of Numerical Weather Prediction (NWP) data is one of the critical 

factors influencing wind power forecasts. This report evaluates the performance of NCMRWF 

Unified Model-Global (NCUM-G) and -Regional (NCUM-R) models for wind speed forecasts at 

three selected wind farms. The study has been performed considering the observed and predicted 

hourly winds for Jul-Dec 2023. Forecast accuracy is evaluated using standard statistical methods. 

The performance of the model in forecasting wind speed has been systematically evaluated on 

hourly, daily, and monthly temporal scales. The observed and forecasted wind data is found to be 

in good convergence but with a general tendency of underestimation by both models. 

Additionally, the study also assesses the effectiveness of bias correction, leading to improved 

wind speed forecasting, particularly at the Wind Farm2 (WF2) with higher forecast errors. 

 Keywords: Wind Power Forecast, Wind Farms, NWP Model, Surface winds, Wind Forecasts, 

Bias Correction 
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1. Introduction:  

Reliable wind power forecasting enables better scheduling of electricity generation, minimizes 

operational costs, and enhances the reliability of power systems. It aids grid operators in 

balancing supply and demand, reduces the reliance on fossil fuel-based backup generation, and 

helps in the efficient management of energy storage systems (Higashiyama et al., 2018). 

Inaccurate forecasts can lead to significant operational issues, including grid instability and 

increased costs due to the need for reserve power.  

Wind power forecasting is essential for integrating wind energy into power grids, optimizing 

energy production, and ensuring grid stability. As the global demand for renewable energy 

sources escalates, accurate forecasting becomes increasingly critical. Wind energy, characterized 

by its variability and intermittency, poses unique challenges for both short-term and long-term 

prediction (Smith et al., 2007). NWP models have emerged as a pivotal tool in addressing these 

challenges, providing advanced methods for forecasting wind power. 

NWP models use mathematical equations to simulate the atmosphere and predict weather 

conditions based on current and past observations. These models incorporate data from satellites, 

weather stations, and other sources to produce detailed forecasts of wind speed and direction, 

which are crucial for estimating wind power output. NWP models can provide forecasts ranging 

from hours to several days ahead, making them invaluable for both operational decision-making 

and strategic planning in the wind energy sector (Ernst et al., 2007). Recent advancements in 

NWP models have significantly improved their accuracy and reliability. Enhanced data 

assimilation techniques, higher spatial and temporal resolution, and the integration of ensemble 

forecasting have led to more precise predicti0ons of wind patterns (M. Leutbecher et al., 2008). 

These improvements are particularly beneficial in complex terrains and offshore environments 

where wind behaviour is more difficult to predict (Treiber et al., 2016). 

The National Centre for Medium range Weather Forecast (NCMRWF) provides the NWP 

forecasts to the wind energy industry using a deterministic global model NCUM-G (Rajagopal et 

al. 2012, Kumar et al.2018, Rani et al., 2019) and a high-resolution regional model (Jayakumar 
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et al. 2019). The model forecast has been utilized in various sectorial application such as 

hydrology (Kumar et al., 2023), tropical cyclones (Kumar et al., 2022) and renewable energy 

(Rangaraj et al., 2024). The models have also been used in operational forecasting of tropical 

cyclones and an inter-comparison of model forecasts for Super Cyclone “Amphan” has been 

presented by (Ashrit et al., 2021). The near-surface wind speed, such as that at 10 and 50 m, and 

at 8 pressure levels, such as 1000, 995, 990, 985, 980, 975, 960, and 925 hPa, are calculated 

using the model outputs of U and V components of winds at these levels forecasted by 

NCMRWF models. Wind speed at these levels is then interpolated to turbine height for 

forecasting wind power. 

In this study, we aim to provide a thorough evaluation of the NCMRWF global and regional 

model's performance in forecasting wind speed at three operational wind farms located in the 

southern state of Karnataka in India. Additionally, we propose a simple bias correction method 

that relies on real-time wind speed data from the wind farms. This approach is essential because 

uncertainties are inherent in the wind speed forecasts from NWP models, along with certain 

biases. The findings from this study will enhance the reliability and accuracy of NWP-based 

wind power forecasts over various time scales, thereby supporting the integration of more 

renewable energy into power grids while maintaining grid stability. 

This report has been organized in the following ways: the NWP model details and datasets used 

in the study in section 2. Section 3 highlights the technical details of model evaluation, the 

statistical metrics used, and the bias correction method. In section 4 we have presented the model 

evaluation results and discussion of the study over selected wind farm locations. Finally, the 

results are summarized in section 5. We have also highlighted the limitations of our study at the 

end. 

2. Description of NWP Model and Datasets 

2.1 NWP Model Description  

The NCUM-G model (George et al., 2016; Rajagopal et al., 2012) employs a seamless modeling 

approach, featuring a horizontal grid resolution of approximately 12 km and 70 vertical levels 

extending up to 80 km in altitude. Since 2018, it has been utilized for providing 240-hour 
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numerical weather forecasts (Kumar et al., 2018). The model and its assimilation system undergo 

periodic updates to incorporate advancements in scientific and technical fields. The model uses 

the advanced ENDGame dynamical core, which enhances the accuracy of solving primitive 

equations and reduces damping effects, leading to better variability in tropical regions and 

improved representation of tropical cyclones and other phenomena (Walters et al., 2017). For 

atmospheric analysis, NCUM employs the Hybrid 4D-Var data assimilation method, which 

integrates flow-dependent background errors provided by the Ensemble Transform Kalman Filter 

(ETKF) based on the NCUM ensemble prediction system (NEPS). The system places significant 

emphasis on assimilating Indian satellite data, including INSAT-3D Atmospheric Motion 

Vectors (AMV), Megha Tropiques (MT)-SAPHIR radiances, and Scatsat Ocean Surface Winds, 

along with other global observations. The NCUM global data assimilation system produces 

analyses four times daily at 0000, 0600, 1200, and 1800 UTC. Each 6-hour data assimilation 

cycle merges observations from a 6-hour window (centered ±3 hours around the analysis time) 

with the model background to generate the NCUM-G analysis. For detailed information on 

model parameterization schemes and data assimilation processes, refer to Kumar et al., (2018). 

The NCUM-R model features a horizontal grid resolution of approximately 4 km and 80 vertical 

levels, with the model top at 38.5 km and 14 levels below 1 km. It operates at a 1-minute run 

time step. Covering India and adjacent oceanic areas, the model provides 72-hour forecasts. This 

convection-permitting configuration does not parameterize sub-grid scale deep convection. It 

uses the prognostic cloud fraction and condensate (PC2) scheme based on (Wilson et al., 2008). 

The sub-grid turbulence is modeled using a blended scheme (Boutle et al., 2014), which 

dynamically combines the 1D boundary-layer scheme by (Lock et al., 2000) with a 3D 

Smagorinsky scheme, utilizing a mixing factor of 0.5. For orography, the model employs the 90 

m digital elevation map from the NASA Shuttle Radar Topographic Mission (SRTM). High-

resolution analysis is generated by the 4D-Var data assimilation system, which includes 

observations used in the NCUM global system (though with different data thinning strategies). 

Additionally, Indian Doppler Weather Radar radial wind data is incorporated into the regional 

data assimilation system within a ± 3 h time window. The model domain spans the South Asian 

region, including the Bay of Bengal and parts of the Arabian Sea (6°S to 41°N and 62°E to 

106°E). Further details on the NCUM-R model configuration are available in (Bush et al., 2020; 

Dutta et al., 2019; Jayakumar et al., 2020). 
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2.2 Data Description  

Model Data: NCUM-G and NCUM-R produce forecasts of u and v components of near-

surface wind speed at 50-m level, 1-hr time intervals from the recent time period July 2023 to 

December 2023. Model forecasts generated at 00 UTC run up to 120 h forecast length have been 

evaluated against observed data. The focus of the study revolves around three wind farms (WF) 

sites, WF1, WF2, and WF2, represented in Figure 1. The details of the WF in terms of latitude, 

longitude, and average elevation are presented in Table 1(a) for the NCUM-G model and Table 

1(b) for the NCUM-R model. 

Site Observation: Site observations have been provided by an Independent Power Producing 

(IPP) company for three wind farms located in the Karnataka state of India. The location of wind 

turbine generators (WTG) for these wind farms has been presented in Figure 1. There are 31, 15, 

and 40 WTGs installed over the WF1, WF2, and WF3, which have an average elevation of 

872m, 954m, and 939 m, respectively. These WTGs are manufactured by Enercon, having a 

capacity of 0.8 MW, a hub height of 56m, a rotor diameter of 48 m, and a model mix of E48 (70 

numbers) and E50 (16 numbers). The anemometer installed over these WTGs provides the wind 

speed and is transmitted through SCADA at 15-minute intervals. For the model evaluation 

purpose, the instantaneous hourly wind speed of all WTGs for each wind farm has been 

averaged. The time steps have been considered in such a way that it matches the time-step of the 

model forecasts, i.e., 1:30, 2:30, 3:30….23:30 h. 

3. Methodology 

3.1 Statistical measures for inter-comparison of observed and predicted  

Statistical metrics such as BIAS, MAE (mean absolute error), RMSE (root mean square error), 

CC (correlation coefficient) have been computed using the equations/formulae as follows: 

 MAE=
1

𝑛
∑ |𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖|

𝑛
𝑖=1     (1)                                          

RMSE=√
1

𝑛
∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖 −  𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖)2𝑛

𝑖=1      (2) 
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CC=
∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡)𝑛

𝑖=1

√∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
2

∑ (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡)
2𝑛

𝑖=1
𝑛
𝑖=1

   (3) 

MBE = 1/n∑ (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖=𝑛
𝑖=1 )                                 (4) 

Where, n is the length of the datasets being compared, Forecast and Observed values correspond 

to NCMRWF Seasonal Prediction System (NSPS) model forecast and analysis respectively, 

whereas Forecast and Observed represent the mean values of it. 

3.2 Bias correction  

NWP model forecasts face inherent challenges stemming from imperfect initial conditions, 

numerical approximations, and the simplification of numerous atmospheric processes, all 

contributing to specific biases (Cheng and Steenburgh, 2005; Coleman et al., 2010; Kalman R.E., 

1960) which are more prominent for surface and boundary-layer parameters such as winds 

(Cheng et al., 2013). This study aims to rectify the bias in the forecasts of wind speed from the 

NWP model for the period July 2023 to December 2023. This correction process involves the 

application of a technique outlined below:   

We implemented a linear regression-based bias correction (Do-Yong Kim et al., 2012) 

methodology to refine forecasted data over a continuous six-month observational period. The 

hourly observed data O(t) and corresponding forecasted data F(t) were utilized, where t 

represents the time index. Our approach involved training the bias correction model using a 

rolling window technique: initially, a three-day (72 hours) subset of data was used to estimate the 

linear relationship between observed and forecasted values. This relationship is expressed as: 

O(t)=αF(t)+βO(t)                                                                                                               (5) 

where α and β are the slope and intercept parameters of the linear regression model, respectively. 

Following model calibration, the estimated coefficients α and β were then applied to correct the 

forecast bias for the subsequent 24-hour period: 

Corrected Forecast(t)=(O(t)−β)/α                                                                                             (6) 
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This moving bias correction procedure was iteratively performed throughout the entire study 

period to continuously update the regression coefficients using newly available data. By 

employing this iterative approach, we aimed to systematically minimize discrepancies between 

observed and forecasted values, thereby enhancing the accuracy and reliability of the forecasted 

data for the study's scientific analysis and conclusions. 

4. Results and discussions  

4.1 NWP Model Evaluation 

The focus of the study revolves around three selected Indian Wind Farms (WF) sites represented 

in Figure1with corresponding model orography also illustrated in the same figure. From the 

figure, we can infer that the WF are at relatively higher elevation in NCUM-G model as 

compared to NCUM-R. Specifically, WF1 and WF3 are at relatively lower elevation whereas 

WF2 is located at the highest elevation. The local topography affects the weather phenomenon 

which at many instances may not be well represented by the NWP models due to their coarser 

resolution. 

 

Figure1: Model orography that highlights the terrain at selected WF sites. 
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The details of the WF in terms of latitude, longitude, and the average elevation are presented in 

Table 1(a) for NCUM-G model and Table 1(b) for NCUM-R model. 

Table 1(a)NCUM-G model points  

Wind Farm            Latitude                                Longitude                                Elevation(m) 

  WF1                            76.62                                  13.62                                        726 

  WF2                            76.75                                  13.50                                        750 

  WF3                           76.50                                  13.75                                        701 

Table 1(b)NCUM-R model points  

Wind Farm Model –Grid Latitude Model –Grid Longitude           Elevation(m) 

  WF1                  76.6                                   13.64                                        713 

  WF1                  76.6                                   13.68                                        726 

  WF2                  76.72                                   13.56                                        757 

  WF3                  76.52                                   13.72                                        756 

  WF3                  76.52                                   13.76                                        751 

The NWP model outputs U and V components of winds at 50 m above ground level, which were 

utilized to compute wind speed (WS). Figure 2 illustrates the mean WS observed during the 

study period, facilitating a comparative analysis between forecasted and analysed parameters. 

The spatial distribution of forecasted wind speeds generally aligns well with the observed 

patterns. Across the study area, mean wind speeds consistently exceed 4-6 m/s in most of the 

western parts of India and remain below 4 m/s in the eastern regions. Whereas specific regions 

within Rajasthan and Gujarat exhibit even more elevated wind speeds, exceeding 8 m/s. The 

NWP model generally performs well in forecasting wind speeds across India, careful 

consideration is necessary when interpreting results for specific regions, particularly those with 

complex topography. However, notable discrepancies are evident, primarily in Rajasthan, 

Gujarat and Karnataka, where the model tends to overestimate wind speeds. This overestimation 

is particularly pronounced in specific localized areas. These findings underscore the model's 
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overall competence in capturing the broad spatial patterns of wind speed across the region while 

highlighting the need for improved accuracy, especially in localized forecasting over complex 

terrains. 

 

Figure 2: Wind Speed Plot comparing NCUM-G model Day 1forecast to analysis wind speed 

for the period July 2023 to December 2023. 

Figure 3 provides a comprehensive assessment of the MBE, MAE, and RMSE for wind speed 

(WS) forecasts compared to model analysis spanning from July 2023 to December 2023. For the 

Day 1 forecast period, the RMSE across most of India remains below 1.2 m/s, indicating 

generally accurate predictions. The MAE is below 0.8 m/s, reflecting minor absolute errors, and 

the MBE ranges between -0.8 to 0.8 m/s. However, certain regions in Rajasthan, Gujarat, Punjab, 

Haryana, and Uttar Pradesh exhibit slightly higher RMSE values, ranging up to 1.5 m/s. The 

MAE in these areas ranges up to 1 m/s, indicating somewhat larger absolute errors, and the MBE 

ranges between 0.4 to 0.6 m/s, suggesting a moderate bias towards overestimation. These 

findings highlight a notable discrepancy between forecasted and analysis wind speeds in these 

specific regions. Despite this, the overall accuracy of the model forecasts for the first 24 hours 

(Day 1) is reasonably good across the study period. While the NWP model demonstrates 
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promising accuracy in forecasting wind speeds over broad spatial scales, targeted improvements 

are necessary to refine predictions in regions prone to higher error rates. 

 

 

 

Figure 3. MBE, MAE, and RMSE in Day 1 forecasts in comparison to model analysis, spanning 

the period July 2023 to December 2023. 

Figure 4 provides a detailed examination of the seasonal dependency in wind speed (WS), 

presenting the monthly cycle of observed and forecasted WS data from July 2022 to December 

2023 for three wind farms (WF). The comparison reveals a notably strong agreement between 

forecasted and observed WS across the three WF sites, with WF1 and WF3 showing particularly 

close matches for WF1 and WF3 as compared to WF2. This variation in performance can be 

attributed to factors such as geographical location and local topography, which influence the 

accuracy of wind speed predictions at specific sites. The figure offers a comprehensive overview 

of mean WS across seasons, facilitating clear comparisons between the different WFs and 

highlighting significant seasonal patterns. Notably, the highest mean WS are observed during the 

months of July to September, characterized as the high wind season, while the lowest mean WS 

occur from September to December, identified as the low wind season. The results indicate that 

the Day 1 forecast closely aligns with observed data, demonstrating a high level of accuracy in 

short-term WS predictions. However, biases in the forecasts are particularly prominent during 

the high wind season from July to September, suggesting potential areas for model improvement 



12 
 

or calibration. Overall, these findings underscore the seasonal variability in WS and the 

robustness of the NWP model in capturing these variations across different geographical and 

climatic conditions. They also emphasize the importance of site-specific considerations in 

interpreting forecast accuracy, particularly in regions prone to seasonal fluctuations in wind 

patterns. 

 

Figure4: Monthly cycle of the observed and forecast wind speed averaged over each of the three 

WF sites during July 2023 to December 2023. 

A comprehensive analysis has been conducted of daily time series data for observed and 

forecasted wind speeds across three WF sites for the period of July 2023 to December 2023. It 

provides valuable insights into the temporal dynamics of wind speeds across different seasons 

and their implications for wind energy management. The analysis of daily time series data 

underscores the importance of robust forecasting models capable of handling rapid changes in 

wind speed. During the study period, WS exhibit significant variability across seasons (Figure 4). 

The months of July to September were identified as the high wind season (HWS) (above panel of 

Figure 5), characterized by the highest mean wind speeds observed at all WF sites. Conversely, 

from October to December, WS were lowest, marking the low wind season (LWS) (bottom panel 

of Figure 5). This seasonal pattern is consistent with typical meteorological conditions in the 

region, reflecting broader atmospheric circulation patterns influencing wind patterns. Our 

analysis of daily time series data highlighted pronounced fluctuations in wind speeds within both 

HWS and LWS. These fluctuations were observed consistently across all WF sites and were 

effectively captured by both NCUM-G and NCUM-R models. Notably, both models 
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demonstrated the ability to capture sudden increases and decreases in wind speeds within a single 

day, indicating their capability to handle rapid changes in atmospheric conditions. The observed 

abrupt changes in daily wind speeds underscore the complexity and challenges associated with 

wind speed forecasting. The ability of forecast models to accurately predict these rapid 

fluctuations is crucial for optimizing the operational efficiency of wind farms and integrating 

wind energy into the power grid effectively.  

 

Figure5: Daily time series of the observed and forecast wind speed for each of the three WF 

sites during July 2023 to December 2023. 

The mean diurnal variation of hourly wind speeds across the WF sites have been presented in 

Figure 6. The data reveals a compelling pattern in the fluctuations of wind speed throughout a 

typical day. The findings indicate that the wind speeds exhibit a consistent rhythm with lower 

values during the early morning and a gradual increase through the day, peaking in the late 

afternoon. The findings indicate that both the model forecasts are generally effective in capturing 

these diurnal patterns throughout the day. However, it is noted that there is a higher range of bias 

observed during the early morning and late night periods. The model tends to underestimate 

wind speeds during these times, potentially due to factors such as boundary layer dynamics or 

local meteorological effects not fully accounted for in the modelling process. Nevertheless, the 
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models demonstrate accurate forecasts during periods when wind speeds peak, which are crucial 

for operational planning in wind energy generation. This highlights the models capability to 

predict wind conditions accurately during times of maximum potential energy production. The 

observed diurnal variations underscore the importance of temporal accuracy in wind speed 

forecasting, particularly for optimizing energy capture and operational scheduling at WF sites. 

Future improvements in modelling techniques could focus on refining predictions during periods 

of lower wind speeds, thereby enhancing the overall reliability and utility of wind energy 

forecasting systems. 

 

Figure 6: Mean diurnal cycle of the analysed and forecast wind speed averaged over each of the 

three WF sites during July 2023 to December 2023. 

The diurnal variation of Mean Absolute Error (MAE) in hourly wind speeds was examined 

across three WF sites, as depicted in Figure 7. A distinct pattern in wind speed fluctuations over 

a typical day emerged, revealing a consistent rhythm characterized by higher MAE values during 

early morning and late night periods when wind speeds were generally low (see Figure 6). 

Conversely, MAE values were lower in the late afternoon, corresponding to periods of higher 
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wind speeds (see Figure 6). Specifically, at WF3 in LWS, significant errors exceeding 1.8 m/s 

were observed during the early morning and late night periods for forecasts generated by the 

NCUM-G model. These findings underscore the challenges in accurately predicting wind speeds 

during periods of minimal wind activity, highlighting potential areas for model refinement or 

additional data assimilation strategies. These insights into the temporal dynamics of wind speed 

variability across WF sites are crucial for optimizing wind energy generation and improving the 

reliability of forecasting models.  

 

Figure 7: Diurnal variation in the MAE in forecast and observed wind speed for each of three 

WF sites, spanning the period from July2023 to December 2023.  

Figure 8 presents scatter plots illustrating the relationship between observed and forecasted 

(Day-1) wind speeds across three WF sites from July 2022 to December 2023. The upper panels 

depict data from the HWS spanning July to September, while the lower panels show data from 

the LWS from October to December. Results are shown for two NWP models: NCUM-G and 

NCUM-R. Across all WF sites and seasons, the scatter plots demonstrate a notably strong 

association between observed and forecasted wind speeds. Each plot exhibits a high level of 

correlation, as indicated by the high R² values. Comparatively, the NCUM-G model generally 
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shows a stronger association between observed and forecasted wind speeds than the NCUM-R 

model. This difference underscores the varying performance of different NWP models in 

capturing wind speed dynamics. Furthermore, the association between observed and forecasted 

wind speeds is consistently higher during the high wind season compared to the low wind 

season. This suggests that the forecasting model performs particularly well when predicting wind 

speeds during periods of higher atmospheric variability and stronger winds. These findings 

underscore the effectiveness and reliability of the forecasting approach employed in accurately 

predicting wind speeds at each WF site. Such accuracy is crucial for informed decision-making 

and operational planning in the context of wind power generation. In conclusion, the robust 

correlation between observed and forecasted wind speeds reaffirms the model’s accuracy and 

reliability, highlighting its potential utility in various practical applications, including energy 

production forecasting and environmental monitoring. 

 

Figure 8: Scatter plot of observed Vs forecast hourly wind speed (m/s) for each of the three WF 

sites during July 2023 to December 2023. The plots indicate very good association as indicated 

by R2 values in each panel. 
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The frequency distribution of wind speed (WS) across various categories to assess the accuracy 

of Day-1 forecasts and to identify potential biases or discrepancies. Figure 9 presents these 

distributions, divided into high wind speed (HWS) in the upper panel and low wind speed (LWS) 

in the lower panel. Both NWP models successfully captured the overall distribution patterns, 

albeit with some degree of underestimation. Specifically, during the HWS, the observed data 

exhibited a peak in wind speeds ranging from 7 to 9 m/s, whereas both models consistently 

forecasted a peak in the 5 to 7 m/s range. Similarly, in the LWS, observed data indicated a peak 

between 4 to 6 m/s, whereas the forecasts showed a peak between 3 to 5 m/s. Notably, compared 

to NCUM-R, the NCUM-G model demonstrated closer alignment with the observed WS 

distributions. These findings suggest that while the models generally captured the broad trends in 

WS distribution, there was a tendency towards underestimating peak wind speeds in both HWS 

and LWS conditions. 

 

Figure 9: Frequency distribution (%) of observed and Forecast (Day-1) wind speed for each WF 

sites, spanning the period from July2023 to December 2023.  
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4.2 Bias Correction 

The analysis conducted in the model verification section strongly underscores the essential need 

for bias correction in forecasting. In this section we have attempted to reduce the model biases in 

forecast wind speed adopting the linear regression bias correction techniques following the 

methodology described in section 3.  The skill assessment has been done in terms of MAE and 

RMSE in the wind speed. In Table 2(a) the MAE and in Table 2(b) the RMSE in the day 1 

forecast from the models (NCUM-G and NCUM-R) before and after bias-correction have been 

presented. The variability of the error clearly shows that where the errors in model forecasts are 

relatively higher are appreciably reduced. The bias correction also helps achieve lower errors 

over the WF2 in particular where the mean error was comparatively high from other two wind 

farms.  This concludes that a simple bias correction technique is helpful and efficient aligning the 

wind speed forecast to the observed WS. 

In the model verification section 4.1, our study emphasizes the critical necessity for bias 

correction in wind speed forecasting. We employed linear regression bias correction techniques 

as outlined in Section 3 to mitigate model biases in wind speed forecasts. The effectiveness of 

this approach was evaluated through skill assessment metrics, specifically Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE), which were computed for the day 1 forecasts from 

two models, NCUM-G and NCUM-R, both before and after bias correction. Table 2(a) presents 

the MAE values, while Table 2(b) displays the RMSE values. These tables highlight how the 

variability of errors in model forecasts was notably reduced post-correction, particularly in 

instances where initial errors were comparatively higher. Notably, the application of bias 

correction resulted in lower errors, particularly evident for WF2, where the mean error was 

initially pronounced compared to the other two wind farms. The findings underscore the efficacy 

of simple bias correction techniques in aligning wind speed forecasts more closely with observed 

values. This alignment is crucial for enhancing the reliability and accuracy of wind energy 

forecasts, thereby supporting better-informed decision-making in energy resource management 

and operational planning. Future research could further explore advanced bias correction 



19 
 

methodologies and their integration into operational forecasting systems to continually refine and 

optimize wind speed predictions. 

Table2(a): Comparison of MAE in Day 1 forecasts before and after bias correction, relative to 

observed data, for HWS(July 2023 to September 2023). 

 

Before BC After BC  Before BC After BC  

 
MAE MAE RMSE RMSE 

 
NCUM-G NCUM-R NCUM-G NCUM-R NCUM-G NCUM-R NCUM-G NCUM-R 

WF1 1.36 1.39 1.10 1.25 1.75 1.77 1.43 1.60 

WF2 1.71 1.74 1.32 1.36 2.13 2.13 1.70 1.77 

WF3 1.60 1.58 1.19 1.29 1.98 1.96 1.52 1.65 

 

Table2(b): Comparison of MAE in Day 1 forecasts before and after bias correction, relative to 

observed data, for LWS(September 2023 to December 2023). 

  Before BC After BC  Before BC After BC  

 
MAE MAE RMSE RMSE 

  NCUM-G NCUM-R NCUM-G NCUM-R NCUM-G NCUM-R NCUM-G NCUM-R 

WF1 1.36 1.48 1.14 1.22 1.76 1.86 1.44 1.54 
WF2 1.57 1.68 1.15 1.20 1.98 2.10 1.47 1.53 

WF3 1.88 1.49 1.24 1.27 2.31 1.86 1.56 1.59 

 

5. Conclusions 

5.1 The model's overall competence in capturing the broad spatial patterns of wind speed across 

India while highlighting the need for improved accuracy, especially in localized forecasting over 

complex terrains. 

5.2 The model forecast accuracy in the first 24 hours (Day1) is reasonably good, with a RMSE of 

less than 1.5 m/s and MAE of less than .8 m/s for Pan-India predictions.  

5.3 The wind speed data reveals notable seasonal patterns, with the highest mean wind speeds 

are observed during the months July to September, which can be characterized as the high wind 

season and lowest mean wind speeds are observed during the months September to December, 
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which can be characterized as the low wind season. Further, the study reveals that biases are 

particularly prominent during the HWS. 

5.4 The mean diurnal variation of hourly wind speed exhibits a consistent pattern with lower 

values during the early morning and a gradual increase through the day, peaking in the late  

5.5The scatter plots depict a high level of association between analysis and forecasted (Day 1) 

wind speed, as seen by the high values of R2. This robust correlation confirms the accuracy and 

reliability of the utilized forecasting model. 

5.6The Day-1 forecast distribution for each wind speed range closely matched the observed WS, 

indicating reliability in the forecasting approach. 

5.7The diurnal variation in MAE in Day-1 wind speed forecasts compared to observed WS 

revealed consistently low MAE values across all WF sites, with each site exhibiting MAE values 

below 2 m/s. 

5.8 Linear regression bias correction technique significantly reduces errors in model forecasts, 

particularly evident for WF2, where the mean error was initially pronounced compared to the 

other two wind farms. 

Limitations 

The report thoroughly examines the performance of NCMRWF Unified Model-Global (NCUM-

G) and -Regional (NCUM-R) models in forecasting wind speed, highlighting the importance of 

implementing bias correction for accurate forecasts. We have introduced a straightforward 

approach and achieved satisfactory results in bias correcting wind speed. Additionally, we plan 

to explore a more advanced technique utilizing machine learning algorithms. Another approach 

we intend to explore involves bias correction of both the u and v components of winds, leading 

to improved forecasts of wind speed crucial forwind power forecasts. 

Authors Contribution: Data Curation and Analysis, Methodology, and manuscript writing by 

Priya Singh.The report was conceptualized, reviewed and supervised by Dr. Raghavendra Ashrit. 

Sushant Kumar contributed to conceptualization and manuscript writing. 
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