Verification of NCMRWF CS EPS for Indian Summer Monsoon 2019

Abhijit Sarkar, Kiran Prasad Siripurapu, Ashu Mamgain and E. N. Rajagopal

NCMRWF, India
Salient features of NCMRWF Ensemble Prediction Systems

NEPS-Global (12km)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid Points & Resolution</td>
<td>2048 x1536 12km</td>
</tr>
<tr>
<td>Members</td>
<td>22 perturbed +1 cntl</td>
</tr>
<tr>
<td>Initial condition perturbations</td>
<td>Perturbations in θ, π, q, u, & v by ETKF method and perturbations in SST, SMC & Deep Soil Temp</td>
</tr>
<tr>
<td>Model Physics Perturbations</td>
<td>Stochastic Kinetic Energy Backscattering and Random Parameter Schemes</td>
</tr>
<tr>
<td>Observations Assimilated in NEPS</td>
<td>AIRS, ATOVS, Aircraft, GOESClear, GPSRO, IASI, Satwind, Scatwind Sonde, Surface, SEVIRIClear, SSMIS</td>
</tr>
<tr>
<td>Forecast length</td>
<td>10 days</td>
</tr>
</tbody>
</table>

NEPS-Regional (4km)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of ensemble members</td>
<td>Control + 11 members</td>
</tr>
<tr>
<td>Driving model</td>
<td>Global EPS- N1024 (NEPS-G)</td>
</tr>
<tr>
<td>Domain</td>
<td>67° E -98° E and 7° - 38° N</td>
</tr>
<tr>
<td>Vertical levels</td>
<td>80 levels up to 38.5 km</td>
</tr>
<tr>
<td>Science configuration</td>
<td>Proto-RA1T</td>
</tr>
<tr>
<td>LBC frequency</td>
<td>3hr</td>
</tr>
<tr>
<td>Forecast Length</td>
<td>75hrs</td>
</tr>
<tr>
<td>Model time step</td>
<td>60 seconds</td>
</tr>
<tr>
<td>Convection</td>
<td>Explicit</td>
</tr>
</tbody>
</table>
• Verification Period: August 1, 2019 - September 30, 2019
• Verification parameters: Precipitation and Zonal wind at 850 hPa
• Verifying data:
 (a) IMD-NCMRWF satellite & gauge merged precipitation of 0.25°×0.25° resolution
 (b) NCUM analysis of U at 850 hPa
• Verification Metrics: RMSE – Spread relationship, Rank histogram, Bias and RMSE of Ensemble Mean forecast, Reliability diagram, ROC, brier score and CRPS
• Quantitative Precipitation Forecast of a heavy rainfall event
• Performance of NEPS-R has been compared with that of NEPS-G
Rank Histogram for day-1 precipitation forecast
(Only for August 2019)

Precipitation bias (mm) of ensemble mean day-1 forecast

- NEPS-G shows larger wet bias due to overestimating light precipitation
- NEPS-R shows dry bias for light precipitation. The green bar at rank-1 may be due to the overestimation of heavy precipitation over some region including the area associated with Western Ghat.
- Both NEPS-G and NEPS-R are under-dispersive
Rank Histogram for day-2 precipitation forecast (Only for August 2019)

Precipitation bias (mm) of ensemble mean day-2 forecast
Increasing height of green bar at 13th rank indicates \textbf{increasing dry bias} in NEPS-R forecast with forecast lead time.

Height of red bar at 1st rank remains nearly same.

Both NEPS-R and NEPS-G are under-dispersive.
Rank Histograms for precipitation forecast (for August and September 2019)

- Increasing bar heights at 13th rank indicates increasing dry bias in NEPS-R forecast with forecast lead time.
- U shaped rank histograms indicates under-dispersive NEPS-R.

Day 1

Day 2

Day 3
Rank Histogram for Zonal wind speed at 850hPa
(for August and September 2019)

Positive bias increases with forecast lead time more in NEPS-G
Both NEPS-R and NEPS-G are under-dispersive which increases with forecast lead time
RMSE and Spread for Zonal wind speed at 850hPa

RMSE of NEPS-R is larger
Both NEPS-R and NEPS-G are under-dispersive during all forecast days
Reliability diagrams for precipitation forecast (for August and September 2019) exceeding 15.6 mm

Both NEPS-R and NEPS-G are over-confident in forecasting precipitation exceeding 15.6 mm/day.

NEPS-G is slightly more over-confident in forecasting precipitation exceeding 15.6 mm/day.
Reliability diagrams for precipitation forecast (for August and September) exceeding 15.6 mm.

Both NEPS-R and NEPS-G is over-confident in forecasting precipitation exceeding 15.6 mm/day.
Over-forecasting is more in NEPS-R than in NEPS-G for U at 850 hPa.
Reliability diagrams for u at 850 hPa
(for August and September 2019)

Day 3

In day 3 forecast also NEPS-G shows better reliability than NEPS-R for U at 850 hPa.
ROC diagrams for precipitation forecast (for August and September); Precipitation Threshold – 15.6 mm

Day 1

NEPS-R

min(AUC) = 0.78
max(AUC) = 0.78

NEPS-G

min(AUC) = 0.82
max(AUC) = 0.82
ROC diagrams for precipitation forecast (for August and September); Precipitation Threshold – 15.6 mm

Day 3

NEPS-R

\[
\begin{align*}
\text{min}(\text{AUC}) &= 0.71 \\
\text{max}(\text{AUC}) &= 0.71
\end{align*}
\]

NEPS-G

\[
\begin{align*}
\text{min}(\text{AUC}) &= 0.79 \\
\text{max}(\text{AUC}) &= 0.79
\end{align*}
\]
ROC diagrams for U at 850 hPa forecast (for August and September); Threshold = 1 sd

Day 1

NEPS-R

- $\min(AUC) = 0.87$
- $\max(AUC) = 0.87$

NEPS-G

- $\min(AUC) = 0.92$
- $\max(AUC) = 0.92$
Both NEPS-R and NEPS-G show good discrimination property.
NEPS-G exhibits better ability to discriminate between events and non events at all forecast lead times.
Brier Score for precipitation

NEPS-R precipitation forecast has more skill than NEPS-G but the skill declines fast with forecast lead time.
Brier Score and CRPS for U at 850 hPa

Brier Score

![Brier Score Graph](image)

CRPS

![CRPS Graph](image)

Both Brier Score and CRPS of NEPS-G is better for U at 850 hPa
CRPSS of NEPS-R is negative w.r.t NEPS_G but the skill is improving with forecast lead time.
Heavy precipitation event on 4th August 2019
Ensemble Mean Precipitation forecast for Day-1 valid on 20190804

Observation

Ensemble Mean Precipitation

NEPS-R

NEPS-G
Both NEPS-R and NEPS-G predicts heavy rainfall well over Western Ghat. NEPS-R predicts rain with higher Probability over east Maharashtra.
NEPS-R predicts very heavy (>11.5 cm) precipitation with more than 90% probability. It also predicts Extremely heavy (19.5 cm) precipitation with more than 50% probability. NEPS-G didn’t predict extremely heavy precipitation.
Both NEPS-R and NEPS-G predicts heavy rainfall well over Western Ghat in day-3 Forecast also.
NEPS-R predicts very heavy (>11.5 cm) precipitation in day-3 forecast with more than 70% probability over small areas of Western Ghat. It also predicts Extremely heavy (19.5 cm) precipitation with probability greater than 30% over some area. NEPS-G couldn’t predict extremely heavy precipitation.
Member tracks and strike probability for TC Fani

NEPS-R_4km: Forecast tropical storm tracks for FANI from 00UTC 01/05/2019

NEPS-R_4km: Forecast tropical storm strike probability for FANI from 00UTC 01/05/2019

Observation

Ens Mean

Control
Storm Following EPSGRAM

IC: 00Z 20190429

NEPS-G

NEPS-G 12km REGfani ensemble: Tropical Cyclone storm-following meteogram FANI (8.3N 87.4E) from 00UTC 29 April 2019

- Number of ensemble members tracked
- 10m wind maxima within 5 degree radius (kn)
- Mean sea level pressure minima (hPa)

NEPS-R

NEPS-R 4km 500 ensemble: Tropical Cyclone storm-following meteogram FANI (8.3N 87.4E) from 00UTC 29 April 2019

- Number of ensemble members tracked
- 10m wind maxima within 5 degree radius (kn)
- Mean sea level pressure minima (hPa)

--- Median ---

Rapid Intensification of “Fani” in NEPS-R
Initially CTE of NEPS-R is large but after 12 hours it does not exceed 40 km.

After 30 hours DPE of NEPS-R track becomes less than NEPS-G track.
• NEPS-R precipitation forecast has high positive bias over west coast. **High resolution observation is required for better validation.**

• Dry bias for light precipitation in NEPS-R forecast increases with forecast lead time.

• Both NEPS-R and NEPS-G are under-dispersive for U at 850 hPa and also for precipitation.

• Both NEPS-R and NEPS-G have good discrimination property.

• RMSE of NEPS-R is more for u at 850 hPa.

• NEPS-R has positive BSS for precipitation w.r.t NEPS-G but skill score decreases with forecast lead time.

• Both Brier Score and CRPS of NEPS-G for u at 850 hPa is better.

• NEPS-R is successful in predicting very heavy and extremely heavy precipitation with higher probability over west coast.
Thanks