ज़ौ

K

四日

ž

NATIONAL WEATHER SERVICE

NOAA

Data Assimilation for the Unified Forecast System: Plans for GFS Version 16 and Progress with JEDI

EMMDA, Delhi, India Monday, 24 February 2020

Daryl Kleist (NOAA/NWS/NCEP/EMC) Chief, Data Assimilation and QC Group On behalf of the entire EMC data assimilation team and collaborators

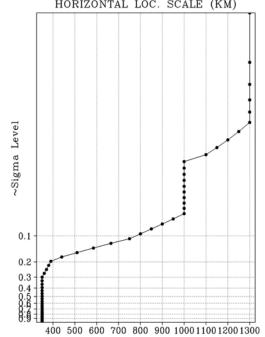
Current Operational GDAS (Hybrid 4DEnVar)

$$J(\mathbf{x}_{c}',\mathbf{a}) = \beta_{c} \frac{1}{2} (\mathbf{x}_{c}')^{\mathsf{T}} \mathbf{B}_{c}^{-1} (\mathbf{x}_{c}') + \beta_{e} \frac{1}{2} \mathbf{a}^{\mathsf{T}} \mathbf{L}^{-1} \mathbf{a} + \frac{1}{2} \sum_{k=1}^{K} (\mathbf{H}_{k} \mathbf{x}_{(t)k}' - \mathbf{y}_{k}')^{\mathsf{T}} \mathbf{R}_{k}^{-1} (\mathbf{H}_{k} \mathbf{x}_{(t)k}' - \mathbf{y}')$$
$$\mathbf{z} = \mathbf{B}^{-1} \mathbf{x}_{c}' \qquad \mathbf{v} = \mathbf{L}^{-1} \mathbf{a} \qquad \text{HORIZONTAL LOC. SCALE (KM)}$$

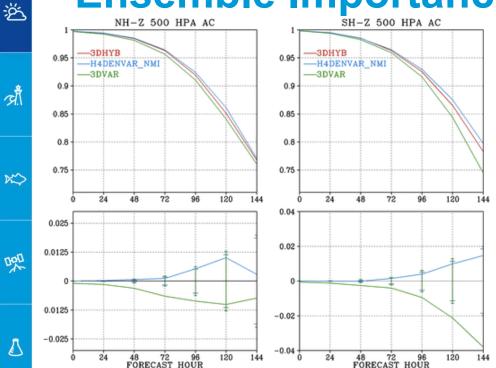
C768L64 (~12km) FV3-based GFS

ž

औ


KS

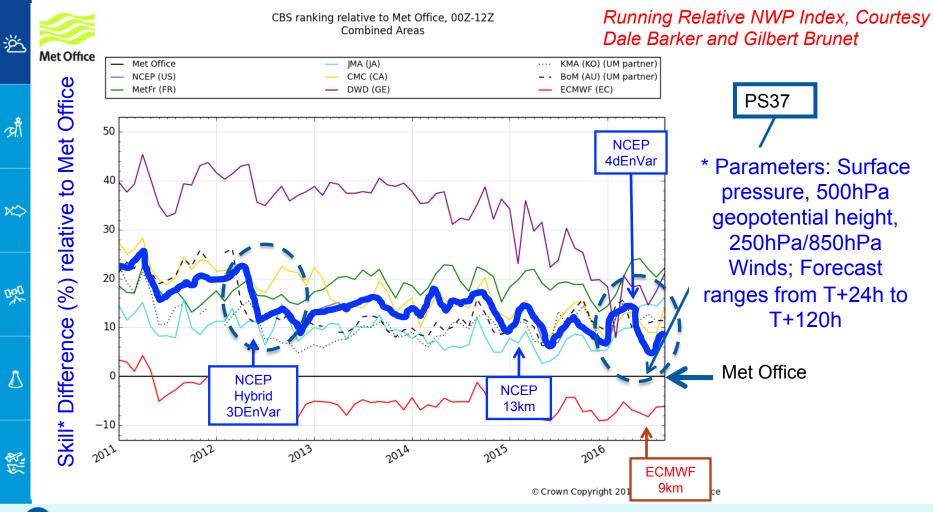
咒


 \square

112

- 80 member C384L64 (~25km) EnSRF for data assimilation
- Level-dependent localization
- Stochastic physics to represent model uncertainty (SPPT, SKEB, SHUM) – Since January 2015 + RTPS (no more additive perturbations)
- Analysis increment at ensemble resolution
- Ensemble perturbations centered about hybrid analysis
 - Ensemble mean state estimate replaced

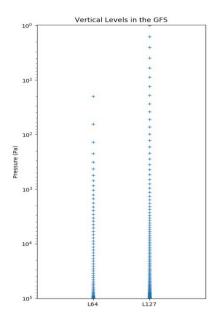
Ensemble Importance for Forecast Skill



Kleist and Ide (2015), Fig. 10: OSSE based study. Comparison of skill from **3DVar**, **Hyb 3DEnVar**, and **Hyb 4DEnVar** for simulated August 2005.

Wu et al. (2017), Fig. 10: Impact of using global ensemble perturbations in regional hybrid EnVar (forecast fits to geop. height, radiosondes). This has also been realized in other regional systems at NOAA (RA

112



NATIONAL WEATHER SERVICE

Recent and Planned Upgrades to the GFS

- GFSv15.1 (June 2019)
 - Initial implementation of FV3based GFS
 - Increase analysis increment & ensemble resolution
 - No DFI
- GFSv15.2 (November 2019)
 - Observation changes: GOES-17 AMVs, KOMPSAT-5 GPS, METOP-C AMSU-A and MHS
 - NSST Updates
- GFSv15.3 (TBD)
 - Observation changes: COSMIC-2, METOP-C GRAS and IASI

- GFSv16 (Early 2021)
 - GSI-based Hybrid 4DEnVar
 - 127 Layers, ~80km model top + Updated physics
 - Modulated-ensemble LETKF (model space localization)
 - 4D-IAU
 - Inter-channel correlated
 observation errors
 - VarQC re-design
 - LDAS
 - New / Additional
 Observations
 - SKEB

ž

औ

KS

四

 Λ

Background Errors for L127 (Cathy Thomas)

Experimented with two methods of generating the static background error:

NMC method

- Preliminary lagged pair database (24 48 hour forecasts)
- Initialized from MERRA initial conditions to mitigate issues above current GFS top
- 2 months of forecasts, one winter and one summer, 00z only

Ensemble perturbation method

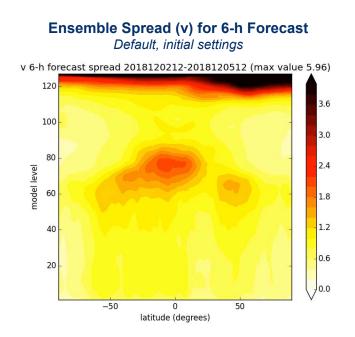
- Ensemble forecast database
- 6 hour forecasts
- 80 ensemble members
- 2 months of cycling, one winter and one summer
- Upper layers had increased damping

Acknowledgements:

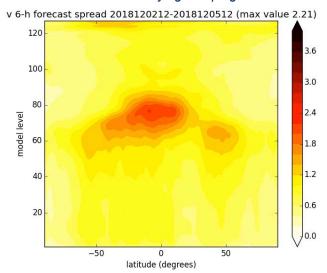
- MERRA conversion utility was provided by Valery Yudin (CU-CIRES)
- The NMC_Bkerror utility was updated to read NEMSIO by Razvan Stefanescu (Spire)

ž

औ


R

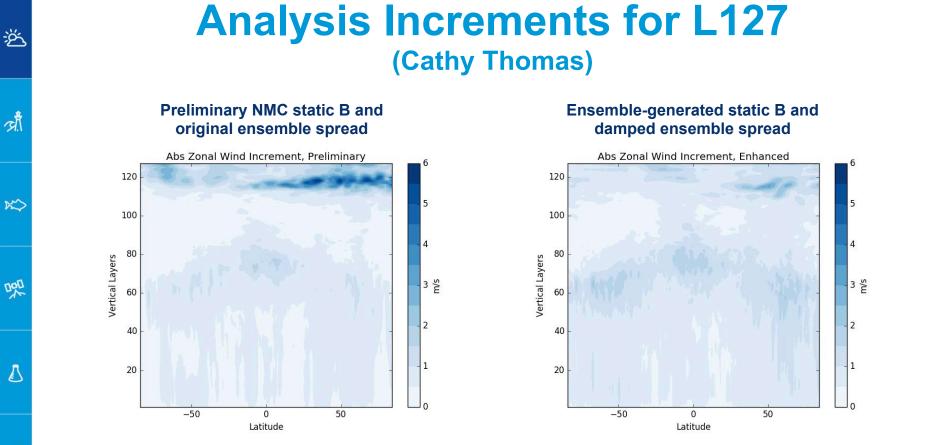
四



Ensemble Spread at Model Top (Cathy Thomas & Jeff Whitaker)

Initial attempts at cycling (with ensemble) were poor due to large spread in upper layers. Needed to modify divergence damping and Rayleigh damping.

Ensemble Spread (v) for 6-h Forecast After modifying damping

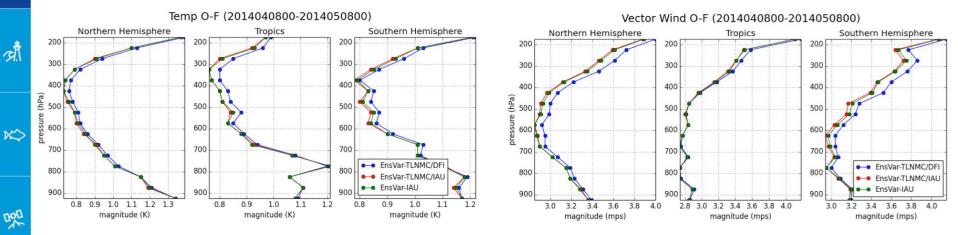

ž

औ

K

明

51.5



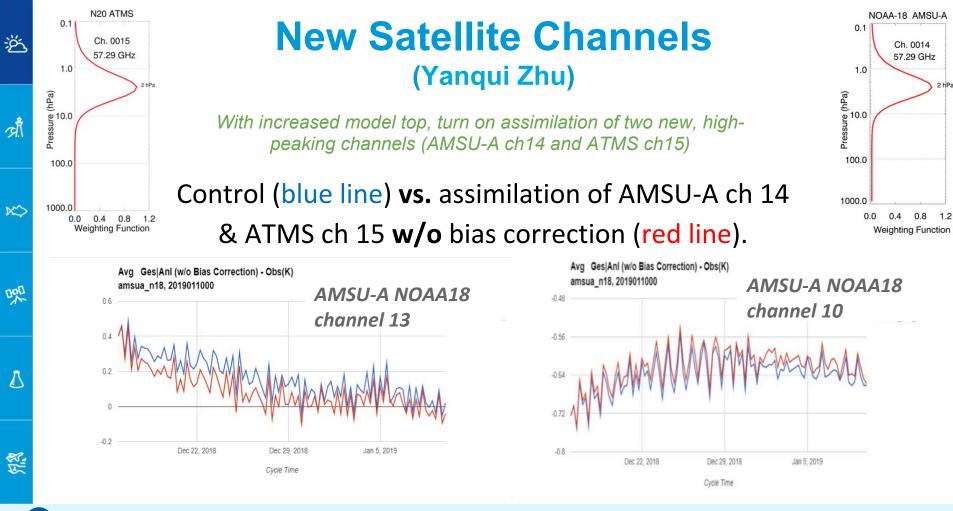
Modifications to both the static and ensemble background errors have greatly reduced the size of the analysis increments at the model top where there are no constraining observations.

NATIONAL WEATHER SERVICE

51.5

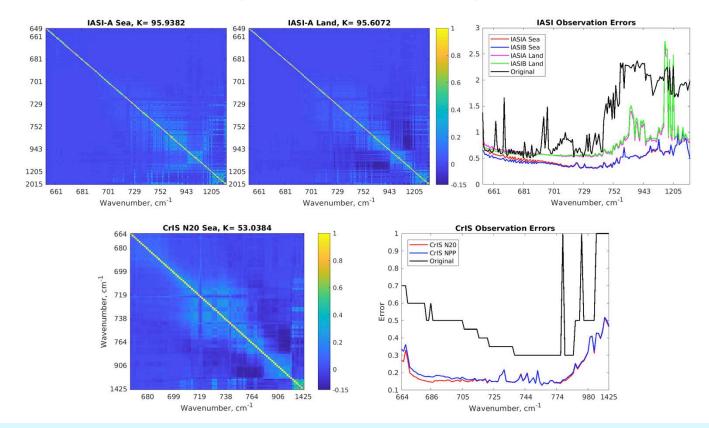
Incremental Analysis Update (Lili Lei & Jeff Whitaker)

Low resolution trials of IAU (with/without TLNMC). Background fits to observations for Temperature (left) and Vector Wind (right).


Digital Filter Initialization (DFI) with TLNMC is the worst performing

IAU+TLNMC is best performing

GFSv15 utilizes TLNMC only. Prior versions of GFS used DFI.

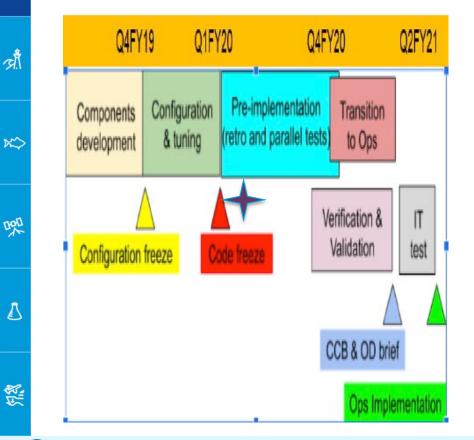

ž

12

NATIONAL WEATHER SERVICE

Interchannel Correlated Observation Error (Kristen Bathmann)

ž


औ

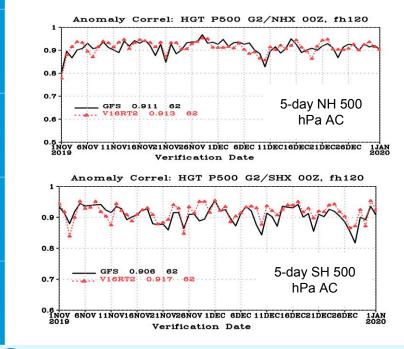
K

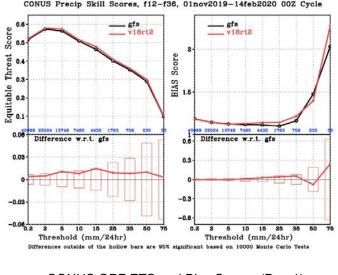
哭

12

Implementation Plan & Schedule

NATIONAL WEATHER SERVICE


ž


Retrospective forecasts start: March 1, 2020

Retrospective forecasts complete: July 1, 2020 MEG Evaluation Kickoff webinar: July 23, 2020 Field Evaluation: August 1, 2020 - September 15, 2020 MEG Evaluation Briefing: September 10, 2020 Field Recommendations due: September 21, 2020 NCEP Director Brief: October 1, 2020 Code delivery to NCO: October 20, 2020 NCO 30-Day IT Test begins: December 21, 2020 (tentative)

(Very) Preliminary 127L Package Results

- Prototype, near-real time run at full resolution since ~November 1, 2019.
 - Not a clean comparison as things are being folded in as they are ready in the run-up to starting official experiments.
 - Includes model and assimilation package components, including physics changes.

CONUS QPF ETS and Bias Scores (Day 1)

्रौ

ž

x

四

1

12

NATIONAL WEATHER SERVICE

<u>त्रौ</u>

K

明

And beyond...

GFSv17/GEFSv13

- Combined package, fully coupled components
- Planning to leverage/transition to JEDI (at least what's ready for implementation)

Algorithms

- Hybrid 4DVar/4DEnVar study
- Supplement with rapid update (hourly) cycling / overlapping windows?
- Coupled DA
- Further exploitation of ensemble information

JEDI

- Need to start redirecting internal efforts toward JEDI development
- Will be the backbone for performing DA in the "Unified Forecast System"
 - Much work remains for transition & testing operational viability

Reanalysis and Reforecast

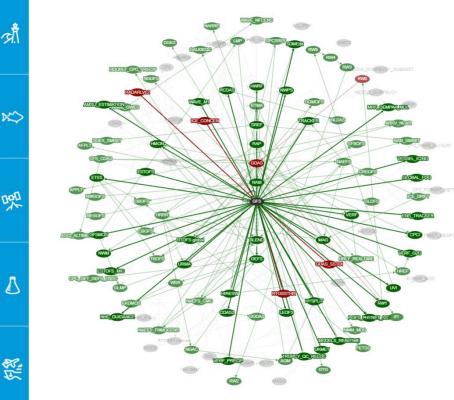
Need to stand up sustained effort

112

Evolution of Production Suite Unified Forecast System JEDI

ž

औ

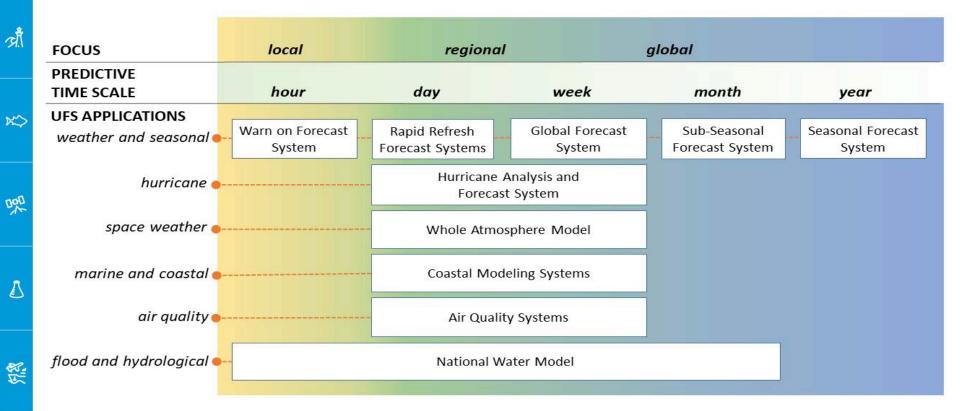

R

明

 Λ

12

Current State of NCEP Production Suite



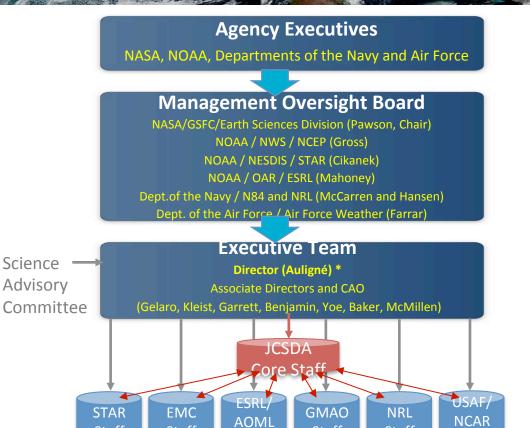
ž

Distinct Modeling Systems of NPS:

- AQM: CMAQ North American Air Quality Model (84 hrs)
- CFS: Spectral model coupled to ocean and ice & weakly coupled DA for seasonal forecasts (9 months)
- GDAS/GFS: FV3 based atmospheric model with GSI based DA (16 days, medium range)
- GEFS: Spectral model with 21 member ensemble (16 days)
- HiRes Window: Regional NMMB (72 hrs)
- HREF: Ensembles of WRF ARW and NMMB (72 hrs)
- HRRR/RAP: Regional WRF ARW with ensemble DA (36 hrs)
- HWRF: Regional WRF NMM-E hurricane model coupled to ocean and waves (126 hrs)
- HMON: Regional NMMB hurricane model coupled to ocean (126 hrs)
- HySPLIT: Regional on-demand dust/smoke/volcanic ash prediction
- NAM: NMMB North American Mesoscale Model (84 hrs)
- NAM Nests: High-Resolution NMMB Nests (84 hrs)
- NWPS: SWAN Near Shore Wave Prediction System
- NGAC: Global Spectral Model for Aerosols (5 days)
- NLDAS: Regional Land Data Assimilation System
- NAEFS: North American Ensemble Forecast System (GEFS+Canadian Ensembles)
- NWM: WRF Hydro for Water Prediction (5 days)
- RTMA/URMA: Regional Mesoscale Analysis
- RTOFS: HyCOM Global Ocean Model (5 days)
- SREF: Short Range Ensemble with WRF ARW, NMMB (84 hrs)
- Waves: Global multigrid WaveWatch III Model (10 days)
- Wave Ensembles: Global WaveWatch III Ensembles (10 days)
- Great Lakes: WaveWatch III for great lakes (10 days)
- Space Weather: Global Spectral Whole Atmosphere Model
- Space Weather: WSA EnLil Solar Wind Predition Model

NATIONAL WEATHER SERVICE

ž


Toward a simpler, UFS-based Production Suite (notional)

~	LIES

-14					-		_	-									-	-		UNIFIED FORECAST SYSTEM
滔	•	Current	Q1	Q2	Q3	Q4	Q1	Q2	Q3FY 21 - Q2FY22		Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	UFS
		Version	FY 20	FY 20	FY 20	FY 20	FY 21	FY 21	MORATORIUM	FY 22	FY 22	FY 23	FY 23	FY 23	FY 23	FY 24	FY 24	FY 24	FY 24	Application
	Global Weather &	GFS/																		
	Global Analysis	GDASv15						GFSv16												
	Global Waves	GWMv3																		
<i>ज्य</i> ौँ	Global Weather								1											
	Ensembles	GEFSv11																		UFS Medium
	Global Wave					GEFSv12														Range & Sub-
		GWES ₃															v17/GEFS)			Seasonal
	Global Aerosols	NGAC v2																		
	Short-Range Regional																			
	Ensembles	SREFv7											1						-	
								1	<u> </u>											
	Global Ocean & Sea-Ice	RTOFSv1 2					RTOFSv2					RTOFSv3								UFS Marine &
	Global Ocean Analysis	GODAS ₂										GODASv3								Cryosphere
	Clobal Cocali Allalysis	CDAS/										CODACTO								
\approx	Seasonal Climate	CFSv2																	SFSv1	UFS Seasonal
m	Seasonal onniate	01012				1														or o deasonal
	Regional Hurricane 1	HWRFv12			HWRFv13					HAFSv1				HAFSv2				HAFSv3		UFS Hurricane
	Regional Hurricane 2	HMONv2			HMONv3									11741 0112				11-4 010		or o married lie
	Regional High	HiRes			HMONVJ															
	Resolution CAM 1	Window v7																		
		NAM nests/											RRFSv1							
		Fire Wxv4																		
TAR					DAD. 5/	1									RRFSv2					
哭	Regional High Resolution CAM 3	RAPv4/ HRRRv3			RAPv5/ HRRRv4															
1. Sec. 1.		пкккю			nKKKV4													UFS Short-Range		
	Regional HiRes CAM					HREFv3														Regional HiRes
	Ensemble	HREFv2																		CAM & Regional
	Regional Mesoscale																			Air Quality
	Weather	NAMv4																		
	Regional Air Quality	CMAQv5								CMAQv6										
	regional All Quality	01111/10210			RTMA/	1														
	Regional Surface	RTMA/			URMA									3DRTMA/						
	Weather Analysis	URMA v2.7			v2.8									URMAv3	;					
		UNIVIA VZ.1			V2.0	I				HySPLIT				J				IL ODUT		UFS Air Quality &
	Atmospheric Transport																	HySPLIT		
		HySPLITv7								v8						-		v9		Dispersion
外梁	Coastal & Regional				NWPS					NWPS						RWPSv1				UFS Coastal
		NWPSv1.2			v1.3					v1.4										
	Great Lakes	GLWUv3.4					_			GLWUv4								GLWUv5		UFS Lakes
	Regional Hydrology	NWM√2					NWMv3							NWMv4						UFS Hydrology
	Space Weather 1	WAM/IPEv1																		UFS Space
																			WAMv2	Weather
	Space Weather 2																			

NATIONAL WEATHER SERVICE

JCSDA Concept of Operations

Staff

Staff

Staff

Staff

Staff

Staff

Joint Center for Satellite Data Assimilation Operating Plan 2019

110 staff (54 FTEs) In-kind: 19 FTEs Core (UCP): 35 FTEs

JEDI Objectives

The *Joint Effort for Data assimilation Integration (JEDI)* is a collaborative development between JCSDA partners.

Develop a unified data assimilation system:

- From toy models to Earth system coupled models
- Unified observation (forward) operators (UFO)
- For research and operations (including R2O/O2R)
- Share as much as possible without imposing one approach

Joint Effort for Data Assimilation Integration (JED

Generic interfaces

- Models: several atmospheric models, ocean, sea-ice
- Observations: radiosondes, aircraft, CRTM, marine

Generic solvers

15+ variational including hybrid-4DVar, EnKF

OOPS

(Object Oriented Prediction System) Full data assimilation generic algorithms

IODA

(Interface for Observation Data Access) Performs all the I/O of the observations.

Allows for all kinds of operators

UFO (Unified Forward Operator)

The 'app-store' of model-agnostic observation operators

NO. 66, Winter 2020

Quarterly

NOAA | NASA | US NAVY | US AIR FORCE

https://doi.org/10.25923/rb19-0q26

IN THIS ISSUE

NEWS IN THIS QUARTER

1 IN THIS ISSUE

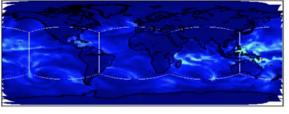
1 NEWS IN THIS QUARTER

The Joint Effort for Data Assimilation Integration (JEDI)

Joint Effort for Data Assimilation Integration (JEDI) Design and Structure Status of Model Interfacing in the Joint Effort for Data Assimilation Integration (JEDI) Observations in the Joint

Effort for Data Assimilation Integration (JEDI) -

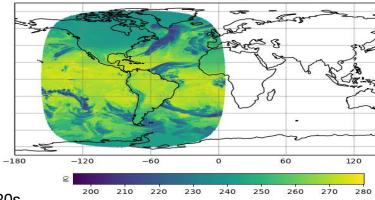
The Joint Effort for Data Assimilation Integration (JEDI)

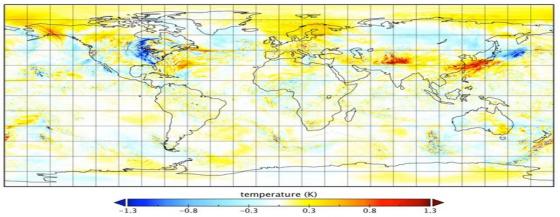

Data Assimilation Challenges

All partners of the Joint Center for Satellite Data Assimilation (JCSDA) run data assimilation algorithms applied to their own models and applications. In 2001, the JCSDA was created to accelerate and improve the use of new satellite observing systems into each member's data assimilation system. As Earth-observing systems constantly evolve and new systems are launched, continuous scientific developments for exploiting the full potential of the data are necessary. Given the cost and limited lifetime of new observing systems, it is important that this process happens quickly. This effort has been successful and continues to be; but, as the context evolves, new challenges emerge.

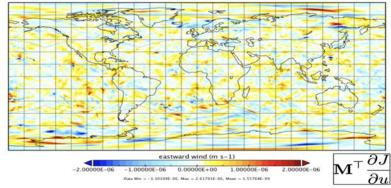
jcsda.org/newsletters

JEDI: One System with Multiple Configurations

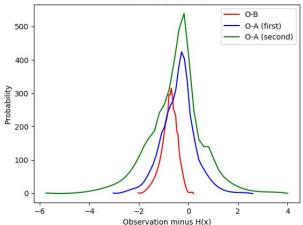

Analysis of lowest model layer for: seas4 valid: 2018041506



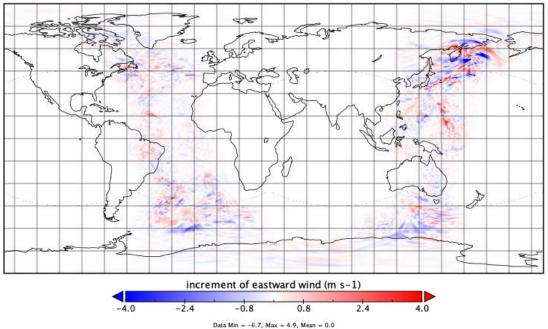
Analyzed ice fraction aggregate


Model simulated brightness tempt, <u>USBN</u> ADVANCED BASELINE IMAGER (GOES-R) channel 1 2018-04-15 000000 UTC

200 hPa T increment propagated 24h by GFSv15 on AWS (1,728 cores) in 7min20s



Adjoint Sensitivity to initial conditions @500 hPa



In core data assimilation – Hybrid 4DVar

- C768 background (from ops) and forecast.
- Native grid and resolution observer.
- Pure ensemble B matrix from C384 (25km) 40 member ensemble (from ops).
- C192 (50km) increment.
- All AMSU-A NOAA 19 (~20,000 obs).
- 3 hour window
- 2 outer loops <u>in-core</u>.
- BUMP for localization, interpolation etc.

Increment of Eastward Wind 2019-11-18 T 18:00:00Z | 600hPa

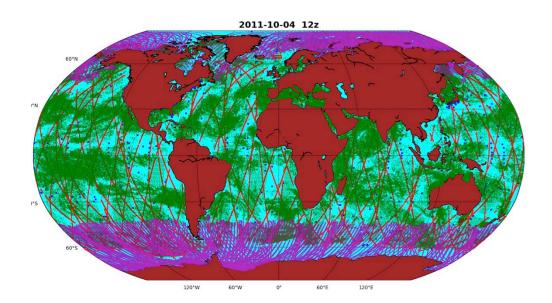
D. Holdaway/JCSDA

औ

R

明

 \square


Daily Ocean Analysis (Largely JEDIbased)

Oct 1, 2011 - Nov 1, 2011

Assimilated Observations

Sea Surface Temperature: AVHRR and Windsat Absolute Dynamic Topography: Altimeters Ice Concentration: SSMI and SSMIS

In-situ Temperature: Argo, CTD, XBT, TAO, PIRATA, RAMA

1 Million Observations per day

112

Summary and Moving Forward

Ensembles now integral part of operational data assimilation across scales

- Background error representation
- Initial perturbations from DA for ensemble prediction system (not covered in this talk)

Major paradigm shift under way

- Open development, community modeling
- Consolidation of production suite into applications based on UFS code base
- Coupled modeling and data assimilation across scales

Public Releases

- UFS global weather application (github, March 2020)
- JEDI Iniital public release, June 2020

12

ž

औ

K

明

Thank you!

NATIONAL WEATHER SERVICE

ž

. जौ

R

哭

 \square

12

NORA