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Monsoon intraseasonal oscillations 

 According to various studies (Krishnamurthy and Shukla 2000, 
2007), seasonal monsoon rainfall can be considered a 
superposition of seasonal mean due to boundary conditions and 
intraseasonal oscillations. 

 There are two dominant intraseasonal oscillations, with periods 
of about 20 days and 45 days. 

 The intraseasonal oscillations characterize the active and break 
phases of the monsoon, and regional rainfall patterns. 
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Monsoon intraseasonal oscillations 

The two dominant MISOs, from 
Krishnamurthy and Shukla (2007) 
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Singular spectrum analysis 

 Given some data, principal component analysis (PCA) finds a set 
of orthogonal vectors which explain the most variance. 

 
 
 
 
 
 
 
 Singular spectrum analysis (SSA, Ghil et al., 2002) is PCA applied 

to time-series data. 
 The multivariate version is called multi-channel SSA (M-SSA), 

same as extended empirical orthogonal functions. 
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Singular spectrum analysis 

 We form sliding windows of length M (embedding dimension) of 
a time-series and apply PCA to them. 

 
 
 
 
 
 
 
 This gives a set of modes that explain the most variance in the 

time-series. 
 Trend, oscillatory, and noise modes can be identified. 
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Singular spectrum analysis 

 By projecting original time-series onto the eigenvectors for each 
mode, the reconstructed components (RCs) corresponding to 
each mode can be recovered. 

 Example: 
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Predictability of MISO 

 Krishnamurthy and Sharma (2017) have demonstrated 
predictability of MISO using a data-driven forecast: 

 This data-driven method predicts MISO much better than the 
Climate Forecasting System (CFS): 

Data-driven MISO forecasts (top), and MISO predicted by CFS 
(bottom). From Krishnamurthy and Sharma (2017). 



Ensemble oscillation correction 
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Motivation 

 The oscillatory modes are much more predictable than the 
overall time-series. 

 Forecasting methods have been developed for individual modes. 
 However, there is no way to go backwards, from the 

Reconstructed Components (unless we forecast all the modes) 
to the original time-series. 

 How do we use forecasts of the RCs to improve prediction of the 
full time-series? 
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Motivation 

 Generally, in ensemble forecasting, it is better to use as many 
ensemble members as possible. 

 However, what if we have some reason to believe some 
ensemble members are better than others? 

 We can forecast oscillatory Reconstructed Components 
accurately purely from data. 

 Idea: for the ensemble mean, use only the ensemble members 
whose oscillation is close to that of a data-driven oscillation 
forecast. 
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Ensemble oscillation correction 

Ensemble oscillation correction algorithm: 
 Using best estimate of the system state, map into oscillatory RC 

space and forecast the oscillation a window h into the future. 
 Integrate ensemble members window h into the future. 
 Map each ensemble member into oscillation space, and 

compare to oscillation forecast. 
 Compute the ensemble mean using the best ensemble 

members, as determined by their discrepancy from the 
oscillation forecast. 
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Ensemble oscillation correction 
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Choosing optimal number of ensemble members 
to average over 

 If we care only about error in ensemble mean, we can easily find 
the optimal number of ensemble members to average over 
using a historical ensemble + estimate of true state. 

 Trade-off between benefits of large ensemble, detriment of 
including inaccurate members. 

Error with number of ens. members included 



Experiments 
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Experiments 

 We show results of the method applied to toy chaotic oscillators 
with parametric model error. 

 This is meant to emulate the case of MISO, where the oscillatory 
mode is badly predicted by the model. 

 In general, error reduction depends on: 
− Portion of variance from oscillations (e.g., MISO represents 

~14% of the variance) 
− Window at which regular ensemble loses skill 
− Window for which Reconstructed Components forecast is 

skillful 
− Model error 
− Ensemble spread 
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Colpitts oscillator 

RMSE corrected over uncorrected 
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Rössler oscillator 

RMSE corrected over uncorrected 
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Chua oscillator 

RMSE corrected over uncorrected 
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Error analysis 

 Under some assumptions, we can derive an estimate of the 
RMSE reduction of this method: 

 
 
 
 Numerical experiments show that this is a reasonable estimate 

when the method works well. 
 
 



Future plans 
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Future plans 

 Paper on the method and tests with toy models soon to be 
submitted to Journal of Climate. 

 Test ensemble oscillation correction method with Indian 
monsoon and MISO: 
• Use India Meteorological Department (IMD) gridded rainfall 

data to run SSA and predictions of MISOs. 
• Using an ensemble of CFS runs, implement ensemble 

oscillation correction at different lead times. 
 The MISOs make up ~14% of daily variance, from which we 

could estimate an error reduction of about 7%, higher or lower 
depending on the region. 

 Could improve other variables too, due to correction of the 
potential vorticity field (Lien et al., 2013) 
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Future plans 

 Following the implementation of ensemble oscillation 
correction, we plan on developing a new hybrid of data 
assimilation, machine learning, and a physical model. 

 Machine learning is generally inadequate for predicting high-
dimensional geophysical systems, but previous work has shown 
hybrids of machine learning and a model are better than either 
separately. 

 Idea: use data assimilation formalism to optimally combine 
forecasts of model and machine learning. 

 Potential to improve monsoon rainfall forecasts. 
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