

Australian Government Bureau of Meteorology

Overview of BoM Operational S2S Ensemble Prediction System and Future Plans

The ACCESS-S system

Harry Hendon Bureau of Meteorology Research Program

Assimilation/System Development led by Oscar Alves Team

ACCESS-S1

• Fast track implementation of the UKMO GC2 model to replace low res POAMA

60km atmos /25km ocean compared to 250km/200km in POAMA

S1 similar to GloSea5 but older UM8.6 configured as GA6

- UKMO-FOAM ocean-sea ice initial conditions (NEMOVAR)
- ERA-Interim (hindcasts) or BoM NWP 4dVar (real time)
- (ad hoc) atmosphere ensemble generation (needed for reliable multi-week predictions)
- Became operational mid 2018
- Many big improvements over POAMA but there are some issues:
 - Initialized with climatological soil moisture
 - Ocean initialisation shock (show example)?
 - 23 year hindcasts (not enough ENSOs, IODs) and 11 member ensembles (not sampling tails)

Hindcasts not sufficient for many applications (skill, calibration, extremes, etc)

- Operationally dependent on UKMO ocean-sea ice initial conditions
- Uncoupled and non-flow dependent ensemble perturbations (POAMA had)

Australian Government Bureau of Meteorology

Hindcasts

- Initialised: 1st, 9th, 17th, 25th of every month 1990-2012
- Hindcasts to 6-month lead time
- 11 members for every start date; 33-members to 6 weeks for the 1st and 17th starts.
- Calibrated outputs for T, Rain, Humidity, Windspeed, Insolation over Australia

driven by user demand

calibrated to 5 km gridded analyses using quantile-quantile matching

globally, simple bias correction on model 60km/25km grid

Real-time forecasts

- 11-member ensemble generated every day for seasonal timescales (6-month forecasts)
- Additional 22 members are generated every day for multi-week forecasts (6-week forecasts)
- Multiweek and Seasonal Forecast products based on a daily-lagged ensemble of 99-members

Uses 3 successive days of forecasts to make up the multi-week 99 member ensemble Uses 9 successive days of forecasts to make up the seasonal 99 member ensemble

Australian Government Ad-hoc Method for Generating Atmospheric Perturbations

Bureau of Meteorology

- Randomly select 7-day differences from ERA-I reanalysis from same start month.
- Scale amplitude using a single scaling (at each latitude) for all fields at all levels to have analysis uncertainty (rms difference of daily ERA-I and NCEP reanalysis of surface pressure)

The perturbation calculation for application to forecasts initialized on 1 May 00Z:

Typical 7-day difference surface pressure analysis from ERA-I for a randomly selected day in May

Tried 1d, 5d, 7d and 10d differences > Some indication 7d produced most reliability

Z500 RMS and spread 20-60S 1 May start; 1990-2012; 5 members Verification: NCEP1 reanalysis

Even at day 1 RMSE lower for perturbed ensemble. But, we didn't compute mean RMSE from each perturbed member to confirm it was higher than unperturbed member (Zoltan)

But, we made a mistake.....

Z500 RMS and spread 20-60S

1 May start; 1990-2012; 5 members Verification: NCEP1 reanalysis

Made a mistake and verified with daily mean whereas model output is instantaneous: causes initial too large RMSE

Performance of ACCESS-S1 Compared to POAMA

Prediction of the SAM and MJO 1990-2012 Madden Julian Oscillation

POAMA

ACCESS-S1

Prediction of El Nino 23 Years of Hindcasts

Correlation skill of forecasts of SSTA for NINO3

Pleasing improvement across "spring barrier" not sure why (yet)

Prediction of Australian Climate

Average accuracy for all points over AUS and all times of year

(For forecasts started on the 1st of every month in 1990-2012; n=276 i.e. 12 start dates * 23yrs)

Forecasts of probability of above median

good gains to week 3-4 but challenge to make gains at longer lead times

Forecast Visualisation Tool (FVT) poama.bom.gov.au (passwd protected) for prototype products

Examples of real time products from FVT

MJO plume

Southern Annular Mode plume

Onset of negative SAM following SSW in early Sep 2019

Australian Government

Bureau of Meteorology

Initialized 19 Dec 2019 Verify 2-8 Jan 2020 Based on calibrated outputs

Mean for state of NSW

Australian Government

Bureau of Meteorology

Example of product explanation

Examples of systematic errors: MJO teleconnection

MJO Impact on Tmax extreme forecast skill

Success Ratio =hits/(hits+false alarms) for Tmax in upper quintile SON 1990-2012

MJO is source of predictability but systematic errors are limiting skill at longer leads

Indian Ocean Dipole

IOD matters to Australia:

LT 1 mnth ACCESS-S1 rainfall /SST bias JJA from 1 May 1990-2012

Indian Ocean rainfall bias drives easterly wind bias, drives thermocline up in the east, SST cools and coupled variability increases

Rainfall bias similar in other seasons

But cold SST/too strong IOD bias emerges primarily JJA-SON (upwelling season)

IOD Teleconnections to Australia Rainfall

Obs DMI-rainfall correlation

Model correlation

Besides bias in IOD amplitude, biases in IOD teleconnections acting to limit predictive skill of SE Australia winter-spring climate

Biases in mean state week 3 (also indicative of longer leads) of the ACCESS-S1 forecasts

Too much rain in western Indian Ocean and too little to NW of Australia

Separation of Subtropical jet and high latitude jet reduced

Positive K_s bias to south and west of Australia allows too much wave propagation west of Australia: MJO/IOD teleconnection gets smeared out

-1

-2

-3

K_s 200 hPa bias

bias

Ks is an index offs refraction for 60S planetary waves: waves will propagate toward higher values

Climatology bias 5N-5S (1960-2014):

Takes >1 yr for SST bias to equilibrate: refer to as coupled shock. Problematic because causes evolving impact on amplitude of ENSO during seasonal forecast

- Short term motivation: Break dependency on UKMO ocean/ice initial conditions
- Same GC2 model (UKMO seasonal showed limited improvements with GC3) > have to live with same biases
- Simplified version of BoM/CSIRO Weakly Coupled ocean assimilation (static ensemble)
- Expanded hindcasts: 37 years, 33 member ensemble hindcasts to support applications
- Was due in operations Feb 2020 (revised target end of 2020)

ACCESS-S2 Coupled Assimilation

- Basic fast track version of BoM/CSIRO Coupled EnKF software (Pavel Sakov)
- Weakly coupled daily cycle (ie ocean assimilation in coupled model)
- Direct replacement of atmos basic variables (from ERA-interim)
- Ensemble OI in ocean using static ensemble (simpler than POAMA)
- Land and sea ice initialized indirectly through coupling: seems ok for now
- Stronger nudging of SST than UKMO FOAM
- No Altimeter (only T/S profiles)
- Multi-variate co-variances– ocean current increments
- 1981-present ocean/land/sea ice re-analyses
- Same ad hoc atmosphere ensemble scheme as in ACCESS-S1 (perturb atmos only);
- Same ensemble size in real time but more hindcast members for multiweek

So far so good: a bit better performance than S1 and less ocean shock On track now to go operational end of 2020

ACCESS-S3: Target 2025

First time to upgrade model: GC5 (or 6?)

- Model improvements from partnership between BoM/USQ/UKMO targeting key tropical biases (IOD/MJO)
- We are not targeting increased resolution (yet)

Assimilation: weakly coupled EnKf (joint BoM/CSIRO development)

- Still use atmospheric analyses as "observations"
- Include altimetry for ocean
- Assimilate SST and sea ice
- Land initialization continue to be indirect
- Basic coupled perturbations directly from assimilation
- More advanced stochastic parameterizations available possibly in NEMO ocean model as well, but need to convince ourselves of their utility (e.g., we found SKEB to be useless)