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Fast track implementation of the UKMO GC2 model to replace low res POAMA

60km atmos /25km ocean compared to 250km/200km in POAMA
S1 similar to GloSea5 but older UM8.6 configured as GA6

UKMO-FOAM ocean-sea ice initial conditions (NEMOVAR)
ERA-Interim (hindcasts) or BoM NWP 4dVar (real time)

(ad hoc) atmosphere ensemble generation (needed for reliable multi-week predictions)

Became operational mid 2018

Many big improvements over POAMA but there are some issues:

O

O
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Initialized with climatological soil moisture
Ocean initialisation shock (show example)?
23 year hindcasts (not enough ENSOs, I0Ds) and 11 member ensembles (not
sampling tails)

Hindcasts not sufficient for many applications (skill, calibration, extremes, etc)
Operationally dependent on UKMO ocean-sea ice initial conditions

Uncoupled and non-flow dependent ensemble perturbations (POAMA had)



Australian Government ACCESS-S1 Hindcast and Real Time Forecasts

Bureau of Meteorology

Hindcasts
. Initialised: 1st, 9th, 17th, 25th of every month 1990-2012

. Hindcasts to 6-month lead time
. 11 members for every start date; 33-members to 6 weeks for the 1st and 17th starts.
. Calibrated outputs for T, Rain, Humidity, Windspeed, Insolation over Australia

driven by user demand

calibrated to 5 km gridded analyses using quantile-quantile matching

globally, simple bias correction on model 60km/25km grid

Real-time forecasts
« 11-member ensemble generated every day for seasonal timescales (6-month forecasts)

« Additional 22 members are generated every day for multi-week forecasts (6-week forecasts)
* Multiweek and Seasonal Forecast products based on a daily-lagged ensemble of 99-members

Uses 3 successive days of forecasts to make up the multi-week 99 member ensemble
Uses 9 successive days of forecasts to make up the seasonal 99 member ensemble



Bureau of Meteorology

= Randomly select 7-day differences from ERA-I reanalysis from same start month.
= Scale amplitude using a single scaling (at each latitude) for all fields at all levels to have
analysis uncertainty (rms difference of daily ERA-I and NCEP reanalysis of surface

pressure)

The perturbation calculation for application to forecasts initialized on 1 May 00Z:
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Tried 1d, 5d, 7d and 10d differences
> Some indication 7d produced most
reliability
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Even at day 1 RMSE lower for perturbed ensemble. But, we didn't compute

Z500 RMS and spread 20-60S
1 May start; 1990-2012; 5 members
Verification: NCEP1 reanalysis

RMSE SKEB2 only
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mean RMSE from each perturbed member to confirm it was higher than
unperturbed member (Zoltan)

But, we made a mistake.....



Z500 RMS and spread 20-60S
1 May start; 1990-2012; 5 members
Verification: NCEP1 reanalysis
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Made a mistake and verified with Lead Time (day)

daily mean whereas model
output is instantaneous: causes
initial too large RMSE



£500 SH 20S-90S 00H Initialized 1 May and 17 April 1990-2012
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Slightly under-dispersive in Tropics and NH, close to ideal for SH
Don't have comparison for SKEB2 only 7




Performance of ACCESS-S1
Compared to POAMA

Prediction of the SAM and MJO 1990-2012

Southern Annular Mode

All Seasons
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Prediction of El Nino
23 Years of Hindcasts

Correlation skill of forecasts of SSTA for NINO3
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Pleasing improvement across "spring barrier"
not sure why (yet)



Prediction of Australian Climate

Average accuracy for all points over AUS and all times of year
(For forecasts started on the 15t of every month in 1990-2012; n=276 i.e. 12 start dates * 23yrs)

Rainfall
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good gains to week 3-4 but challenge to make gains at longer lead times




Forecast Visualisation Tool (FVT)
poama.bom.gov.au (passwd protected)

for prototype products
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Atmos Products

Basic Charts
> 6ikm
> 5km bias corrected
> 5km calibrated
Regions Stations
Pie Charts
Daily distributions
Quintile bars
30 day Meteogram
POE

2D Cumulative POE
Extremes
Heat wave map
Hot days plume
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(THI) daily distributions
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Ocean Products

Basic Charts

> Horizontal Charts
Regions Stations

> Ocean Plume

> Ocean Pie Chart

> Quintile bars

> 2D Cumulative POE
POE Charts

> 25km SST

Probability of Decile 9&10 Maximum Temperature

Region: Australia
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MJO plume

Examples of real time products from FVT

MJO Index Forecast initialised: 21 December 2019

Model: ACCESS-S1 ( 33 member )
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Southern Annular Mode plume

Daily-mean SAM index

Climatology years from 1990-2012

Model run: 20191016
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Initialized 19 Dec 2019
Verify 2-8 Jan 2020

Based on calibrated outputs

Obs Tmax anomalv 1-7 Jan 2020
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Example of product explanation

Hot days/nights forecast for upcoming weeks/fortnights/months/seasons

Hot days definition:
Tnax > 90™ percentile threshold of daily T,

Hot nights definition:
T.in>90™ percentile threshold of daily T,

Hot days+nights definition:
T, > 90 percentile threshold of daily T,

"Hot" is defined as being in decile 10. The 90t percentile
threshold is calculated by looking back over the historical
period for the particular time of year of interest. 10% of days
are hotter than this threshold. The index will capture "warm"
days in the winter half of the year and "warm" days in cold
regions (i.e., unusually warm days) because the threshold is
determined relative to the given time of year and region.

In this definition, the hot events do not have to be consecutive.

What does "usual number of hot days"
mean?

The 'usual number' of hot days is 10% of the forecast period.
For example, for an upcoming month of 30 days, the usual
number of hot days will be 3. For an upcoming season of 90
days, the usual number of hot days will be 9. Therefore, for
the latter, if 80 of the 99 members of the forecast ensemble
are forecasting >9 hot days, then there is an 80% chance of
having more hot days than usual for the given location.

Example: hot days

Hot Day (Tasmax) Probability
Region: Australia

Start: 28-Oct-2019

Period: Week: 28-Oct-2019 to 03-Nov-2019
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Chance of having more than the usual number of hot (decile 10) d}ys (%)

Low chance 40

Dark Red: More than 70% of the forecast ensemble (plausible outcomes)
are forecasting more hot days than usual
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anticyclone
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Tasmania
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SE)

Examples of systematic errors: MJO teleconnection
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Model MJO composite
Ph1/2 using individual

member
How well does ACCESS-S1 S|mulate tasmax Reg to P1/2 W2L1
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MJO Impact on Tmax extreme forecast skill
Success Ratio =hits/(hits+false alarms) for Tmax in upper quintile SON 1990-2012
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MJO is source of predictability but systematic errors are limiting skill at longer leads



Indian Ocean Dipole

corr Jul=Nov averaged DMI HodISST
with Jul=Nov averaged HadISST1 SST 1958:2007 p<10%
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|IOD matters to Australia:
Composite Winter-spring rainfall deciles for positive 10D
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LT 1 mnth ACCESS-S1 rainfall /SST bias
JJA from 1 May 1990-2012

Init: 01May rainfall bias Verif: JUA(LT1)
90°N Init: 01May

Surface Temperature bias,g i JUALTT)
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Indian Ocean rainfall bias drives easterly wind bias, drives thermocline
up in the east, SST cools and coupled variability increases

Rainfall bias similar in other seasons
But cold SST/too strong 10D bias emerges primarily JJA-SON (upwelling season)



|OD Teleconnections to Australia Rainfall

Obs DMI-rainfall correlation Model correlation

JAS Init: 01May iod Verif: JAS(LT2)
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Besides bias in IOD amplitude, biases in 10D teleconnections acting
to limit predictive skill of SE Australia winter-spring climate



Biases in mean state week 3 (also indicative of longer leads) of the ACCESS-
S1 forecasts
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Evolution of biases
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Climatology bias 5N-5S (1960-2014):

DecPreSys 66 months
DePreSys3 GC2 SST & UV10m bios (5°S-5°N, 1960-2014)

!

ms”'

: YR Z 777 T ; . 1
Evolution of Ocean bias e P 4 ?M(/ p il
, : } [ ] n ‘
R e g !wmwi
J& 1 gk S e
ACCESS-S1 36 months 1990-2012 = ikl S

:
Bias SST 5N-5S UL, 1 0 T g
VI g ; 3 —jummqj A

ACCESS—S1 SST & Uas bias (5°S-5°N, 1990-2012)
0CT(+3) R - - -
J uI +3 JUL(+3) - i\\ : ;
APR(+3) 2 ‘}..‘1 B
won| ' WK
ocT(+2)
J ul +2 WL(+2)
APR(+2)
IAN(+2) W)
ocT(+1)

Jul +1 JuL(+1)

APR(+1)

IN(H)

JAN(+1)

Nov O .

3 ) ' E 1

-5 -4 -3 -2 -1 -05 0 0.5 1 2 3 4 5

5 -4 -3 -2 -1 =050 05 1 2 3 400

Takes >1 yr for SST bias to equilibrate: refer to as coupled shock. Problematic
because causes evolving impact on amplitude of ENSO during seasonal
forecast
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« Short term motivation: Break dependency on UKMO ocean/ice initial conditions

« Same GC2 model (UKMO seasonal showed limited improvements with GC3) > have to
live with same biases

« Simplified version of BoM/CSIRO Weakly Coupled ocean assimilation (static ensemble)

« Expanded hindcasts: 37 years, 33 member ensemble hindcasts to support applications

* Was due in operations Feb 2020 (revised target end of 2020)



ACCESS-S2 Coupled Assimilation

Bureau of Meteorology

« Basic fast track version of BoM/CSIRO Coupled EnKF software (Pavel Sakov)
« Weakly coupled daily cycle (ie ocean assimilation in coupled model)

« Direct replacement of atmos basic variables (from ERA-interim)

 Ensemble Ol in ocean — using static ensemble (simpler than POAMA)

« Land and sea ice initialized indirectly through coupling: seems ok for now

« Stronger nudging of SST than UKMO FOAM

* No Altimeter (only T/S profiles)

« Multi-variate co-variances— ocean current increments

« 1981-present ocean/land/sea ice re-analyses

« Same ad hoc atmosphere ensemble scheme as in ACCESS-S1 (perturb atmos only);

« Same ensemble size in real time but more hindcast members for multiweek

So far so good: a bit better performance than S1 and less ocean shock
On track now to go operational end of 2020



ACCESS-S3: Target 2025

First time to upgrade model: GC5 (or 67?)

Model improvements from partnership between BoM/USQ/UKMO
targeting key tropical biases (I0D/MJO)

We are not targeting increased resolution (yet)

Assimilation: weakly coupled EnKf (joint BoM/CSIRO development)

«  Still use atmospheric analyses as "observations"

* Include altimetry for ocean

 Assimilate SST and sea ice

« Land initialization continue to be indirect

«  Basic coupled perturbations directly from assimilation

More advanced stochastic parameterizations available possibly in
NEMO ocean model as well, but need to convince ourselves of their
utility (e.g., we found SKEB to be useless)



