EMMDA conference in Delhi, India

Introduction to the Korean Integrated Model (KIM) based global ensemble prediction system

Joohyung Son

Jieun Cha, Soon-il Kown, Nuri On Thanks to many KIAPS staffs

Numerical Weather Modeling Center, KMA

Korean Integrated Model (KIM)

The global NWP system developed by KIAPS for 9 years

- Spectral-element nonhydrostatic dynamical core on a cubed sphere grid
- The vertical coordinate is a hybrid sigma dry-pressure coordinate

 Hybrid four-dimensional ensemble variational data assimilation (4DEnVar) on its native grid

Lower resolution

KIM Global EPS system

		KIM-GEPS	Operational (MOGREPS-G)
Ensemble DA	Data Assimilation (ensemble size)	LETKF (50)	ETKF (48)
	Localization	Horizontal, vertical	Horizontal, vertical
	Inflation	Adaptive multiplicative, Additive, RTPS (KIM3.5)	Multiplicative
Initial Surface Perturbations		-	SST, SMC, Tsoil
Stochastic Physics		SPPT, SPDT, SSST (KIM3.5)	Random Parameter, SKEB
Re-centering to the global analysis		u, v, t, q(50%), psfc(100%)	u, ν, t, q, π
Horizontal/vertical resolutions		ne090np3(~50km) / L91(0.1hPa)	N400(~32km) / L70(80km)
Ensemble size for forecast products		Control + 13 perts (in semi-operations)	25 with Time Lagging (Control + 12perts + 12perts from -6hr cycle)

KIM – LETKF

Observation operators

- Use bilinear interpolation between the observation point and the adjacent grid-points on a cube-face
- Which is calculated by the relationship between spherical coordinates and equiangular coordinates

Localization

- Horizontal localization:
 - Gaussian-like Gaspari-Cohn functions.
- Vertical localization:
 - For conventional data, Gaspari-Cohn functions with respect to pressure scale height.
 - For radiance data, direct use of weighting function defined by a gradient of transmittance of measured radiance.

Spatial Localization distance (degree)

KIM – LETKF

Inflation methods

• Adaptive multiplicative inflation of Miyoshi (2011)

 $\Pr(\alpha_i^a) = N(\overline{\alpha}_i^o, v_i^o) \Pr(\alpha_i^b)/\text{norm}$

- Additive Inflation
 - Make a pool of differences between T+12 and T+6 hour KIM forecasts valid at the same time, gathered for the 3-month period Sep Dec 2016.
 - For each member *i*, a difference A_i is randomly chosen from the pool, the mean over all members subtracted, and the perturbation then scaled by w:

 $A_{i}' = A_{i} - \sum_{i=1}^{50} A_{i}$, $x_{i}^{a} = x_{i}^{a} + w A_{i}'$, where w = 0.3

Effect of Inflations

- Adaptive multiplicative inflation by itself cannot maintain spread in the KIM LETKF
- Additive inflation has an important role
- The KIM LETKF adopted **RTPS** in KIM3.5.
 - Adaptive Multiplicative + Additive
 - Adaptive Multiplicative

Scaling and partial recentering

Scale down upper-level perturbations Move the ensemble-mean analysis towards the deterministic analysis

$$X'_{i} = s_{ens}(X_{i} - \overline{X}_{i}) + (1 - w_{det})\overline{X}_{i} + w_{det}X_{det}$$

scale pert

partially recenter state

- *X_i* Analysis of each ensemble member
- X_{det} Analysis of the deterministic model
- s_{ens} 1, but decreased linearly from level 75 to the 0.7 at the top to prevent excessive spread in the upper layers
- w_{det} 1.0 for u, v, and t, 0.5 for q, 0 for psfc, but 0.5 for u, v, t in KIM3.5

Performance of KIM3.4 – EPS

Evaluation of ensemble forecasts produced by an early version

KIM3.4: ne090np3 (50km) / no Stochastic Physics / multiplicative & additive inflations

- Small spread relative to MOGREPS-G
- Effect of increasing the ensemble size is not big

Effect of ensemble resolution

Compare two horizontal resolutions with identical options KIM3.3b: ne090np3 (50km) / ne144np3 (32km)

- Higher resolution gives benefit, but performance still not comparable to the operation EPS.
- (In the 4DEnVar system, the high-resolution ensemble improves the performance of the global deterministic analysis.)

Relaxation-to-prior spread (RTPS) Inflation (Whitaker and Hamill, 2012)

2.40

- RTPS is applied instead of the adaptive multiplicative inflation
- Tested different vertical profiles of the RTPS factor α: "RTPS", "MRTPS", and "New MRTPS".
- RMSE is better in order of New MRTPS > MRTPS > RTPS > adaptive multiplicative inflation
- Spread is also improved (not shown)

Stochastic Perturbed Parameterization Tendencies (SPPT) & Stochastic Perturbed Dynamic tendencies (SPDT)

- SPPT perturbs the total parameterized tendencies with a random number sampled from the Gaussian distribution with a spatial and temporal autocorrelation.
- One random number for each vertical column. Random numbers uncorrelated horizontally.
- The tendency is applied only to temperature and humidity now, because of model stability.
- SPDT is similar to SPPT, but for dynamic tendency

Spread difference for U between w/o ST and with ST

- The stochastic tendency methods generally improve spread at early forecast times for every variable, even if only applied to T and Q.
- But as the forecast time gets longer, the middle and polar latitudes below 200 hPa show reduced spread.

The current KIM–EPS

Compare two versions

KIM3.4: ne090np3 (50km) / no Stochastic tendency / multiplicative & additive inflations Recentering: $w_2 = 1.0 (u, v, t), 0.5(q)$ / ensemble size 14

KIM3.5: ne144np3 (32km) / SPPT & SPDT / new MRTPS & additive inflations

Recentering: $w_2 = 0.5$ (u, v, t, q) (+ Upgrade of DA and Physics) / ensemble size 14

Future plan

Test initial SST perturbations, as used already in MOGREPS-G

Daejeon: Site(36.37N,127.37E) OPER(36.45N,127.58E) ,KIM3.4_M26(36.25N,127.5E), KIM3.4_M14(36.25N,127.5E) EPS point is 20.1, 17.8, 17.8km far from Station Period: 2019070100 - 2019073112 [UTC]

- The spread of surface variables is too low, especially for the early forecast times.
- In addition, there's no big difference for RMSE and spread between ensemble sizes of 26 and 14
- So we need to add surface perturbations

Experiments

- SSST: stochastic tendency like SPPT in 3 layer sea-ice model
 * ocean-mixed layer model
- **1. Initial SST perturbations**: perturbations around OSTIA analysis, as in MOGREPS-G

Operational Plan

	April, 2020	April, 2021
Status	Semi-operational	Operational
НРС	5 th initial machine (416 nodes/39,936 cores)	5 th Final machine (7,200 nodes/691,200 cores)
Cycle	Late cycle	Early cycle
resolution	Ne144np3(32km) L91 M50	Ne144np3(32km) L91 M50
Ensemble size for fcst	Control + 13 perturbations	Control + 25 perturbations
fcst length	10 days (00, 12 UTC)	12 days (00, 12 UTC)