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DATA and Methods

* Hindcast skill is referred as Anomaly correlation for JJAS (Summer
Monsoon season)

* Rainfall reference data sets: GPCP, IMD Gridded
* AISMR: All India Summer Monsoon Rainfall averaged over Indian land.

* |ODE: Indian Ocean Dipole Eastern pole (90-110°E, -10°s-Eq)
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Running Correlation (11-yr) between Observed and Predicted AISMR with Feb. and Apr. IC
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Implications for non-perfect ensembles

Time-mean ensemble spread # RMSE of ensemble mean forecast

ensemble spread < RMSE = ensemble is under dispersive
ensemble spread > RMSE > ensemble is over dispersive

RPC > 1-> under confidence; VARsignal too small, model underestimates predictability of real
world, observed correlation > perfect model correlation

RPC <1 overconfidence; observed correlation < perfect model correlation model predictability is
larger than in real world



Methods of ensemble generation
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Burst
ensemble

Lagged
average
forecasting
(LAF)

Initial time

Forecast time

» Burst Ensemble- Members of a large
ensemble (e.g., 50 members are initialized
from the same time)

» Lagged ensemble- Smaller set of model
integrations are started from consecutive
initial times

Hindcast Period: 2003-2017



ENSEMBLE GENERATION

* NCEP (NOAA) - GFS based atmospheric model and 3D
variational Grid Statistical Interpolation (GSI) analysis Scheme.

* A ten member ensemble ICs for the above retrospective period for
00z and 18z cycles are created by adding samples of 48-24 hour
forecasts differences of the same GFS model with a specified
amplitude and of zero mean ensemble.



Experiment design

Seasonal

| Forecast runs

Atmospheric Model
GFS
T126 L64 levels

Ice Model

Hindcast period: 2003-2017

CTL run (L)

- Lagged initialization

- Feb, Mar & Apr ICs

- 10-12 members

Sensitivity run (P)

- Perturbed initialization

- 10 members

- Initialized on 015t of Feb,
Mar & Apr




Model Spread and RMSE: NINO3.4

FEBIC MAR IC
RMSE and SPREAD RMSE and SPREAD

ST ki

Az 2 J 4 A 6 O 8 D
M: 2 M 4 1] 6 S 8 N = == SPRD_MAR_P SPRD_MAR_L

= == SPRD_FEB_P SPRD_FEB_L RMSE_FEB_P RMSE_FEB_L

RMSE_MAR_P RMSE_MAR_L

RMSE and SPREAD APRIC
» RMSE is increasing with

lead time with maximum in ! /
May/June 08 __/
> Spread is close to RMSE oo \/_’_ ________________
except in AMJ in Feb. IC o _osgeeT
0.2 -

M 2 ] 4 S s N7 9

= == SPRD_APR_P SPRD_APR_L RMSE_APR_P RMSE_APR_L




Model Spread and RMSE: IODE
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Model Spread and RMSE: All India Rainfall
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Monthly Model Skill: Nino 3.4
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» At longer leads (FEB IC), the Nino 3.4 skill is higher in the later months for lagged method

» Comparable monthly evolution of skills at shorter leads



Monthly Model Skill: IOD East pole
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» At longer leads (FEB IC), the 10D skill is higher in the later months for perturbed method

» At shorter leads , the skill in the initial 2-3 months is higher for lagged method



Mean biases: SST & Rainfall
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> Mean biases in SST & rainfall are almost similar




JJAS ACC for rainfall
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JJAS ACC for SST
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AISMR correlated with SST
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Model Skill & Teleconnections
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MEAN  SD ISMR  ISMR (IMD) Nino3.4 IODE  ISMR vs Nino 3.4
(GPCP)

GPCP 6.92  0.59 - - - - -0.73
IMD 7.45  0.63 - - - - -0.67
FEB P 3.95 037 0.31 0.47 0.50 0.70 -0.31
(Lagged) (3.88) (0.41)  (0.23) (0.37) (0.61)  (0.63) (-0.26)
MARP 406  0.32 0.49 0.65 0.66 0.63 -0.39
(lagged) (4.04) (0.41)  (0.63) (0.64) (0.60)  (0.71) (-0.56)
APR P 426  0.47 0.37 0.49 0.80 0.77 -0.55
(lagged) (4.39) (0.47)  (0.55) (0.44) (0.82)  (0.78) (-0.64)

Mean monsoon rainfall is similar across both lagged & perturbed model runs.
FEB (L) & MAR (P) Nino 3.4 skill is slightly better but is similar for other ICs
FEB (P) & MAR (L) IODE skill is better

ENSO teleconnections have become stronger in the recent period 2003-2017
Teleconnections with ENSO are surprisingly weak in the model for 2003-2017
IOD teleconnections are opposite to what is expected

ISMR vs IODE

-0.24
-0.27

0.55
(0.73)

0.46
(0.65)

0.71
(0.58)



AISMR Skill
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Perturbation Perturbation Perturbation

(lagged) (lagged) (lagged)
IMD 0.47 (0.37) 0.65 (0.64) 0.49 (0.44)
GPCP 0.31(0.23) 0.49 (0.63) 0.33 (0.55)

v' For all initializations, the lagged and perturbed ICs have
comparable skill scores

v’ Perturbed Feb IC is somewhat better compared to lagged
initialization approach.




Summary

»Both Burst and Lagged ensembles appears to be resulting in similar
statistics for all India Summer Monsoon Rainfall

» One advantage of the perturbed ICs is that one do not have to wait for
the whole month observations (Initiate all ensemble runs on 15t of each
month)

» Both ICs resulted in RMSE >> Spread for AISMR (i.e under dispersive).
For SST indices RMSE and Spread are almost equal

» The question of how to improve spread in ensembles is still eluding us
for AISMR

CAVEATS

» The hindcast period is very short (15 years) for seasonal prediction
» Perturbations at this moment are only in atmosphere component
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Ensemble spread of Nino 3 SST forecasts
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Ensemble spread of SST forecasts as a function of lead
time: The daily evolution of the spread during the first
month

LA — Lagged average SP — Stochastic physics
WP — Wind perturbation SWT — WP+TP+SP
TP — Temperature perturbation | NDA — No data assimilation

WP & SP display a different behavior

Strong relaxation to observed SST during the
analysis prevents any significant spread in SST
at initial time in WP,

TP, SWT, and LA provide a better estimate of
the uncertainties during the early range of the
forecast than WP and SP.

In TP and SWT, there is a slight decrease of the
spread during the first week of the forecast
that might correspond to the noisy component
of the SST perturbations being dissipated in
the coupled model because it does not have a
physical structure.




Ensemble spread of Nino 3 SST forecasts
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LA — Lagged average SP — Stochastic physics
WP — Wind perturbation SWT — WP+TP+SP
TP — Temperature perturbation | NDA — No data assimilation
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* For all lead times beyond month 3, the spread
in SST forecasts given by the TP, WP, and SP
methods is very similar.
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Ensemble spread of SST forecasts as a function of lead
time: the time evolution (in months) for the whole forecast
period

Since El Nifo predictability is generally believed to stem from the knowledge of oceanic initial conditions, one
would normally expect uncertainties in oceanic initial conditions such as those generated in the WP experiment,
to give rise to corresponding uncertainties in El Nifio forecasts.
However, the spread in experiment WP (with uncertainties in initial conditions) is indistinguishable from the
spread arising from purely internal atmospheric variability (experiment SP).

Since “burst ensembles” allow a more timely delivery of the forecasts than LA, they should be preferred to LA
in an operational system.




