On the Development of an Efficient Ensemble Data Assimilation and Forecasting System for the Red Sea

Sivareddy Sanikommu, Habib Toye, Peng Zhan, Naila Raboudi, and Ibrahim Hoteit

King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Presentation for the EMMDA-2020 Conference in NCMWRWF, India -February, 2020

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Sources of Forecast Errors

Forecast Error Covariance (B): It's role $X^{a} = X^{b} + BH^{T}[HBH^{T} + R]^{-1}[Y - HX^{b}]$

King Abdullah University of Science and Technology

How to account for these uncertainties in ensemble methods?

- Pre-selecting an appropriate ensemble(s) from an available dataset -EnOIs
 - Advantages: Computationally very efficient
 - Limitations: Does not well-represent the error-of-the-day, especially when dealing with rapidly varying dynamics
- Dynamically evolve the ensemble using the model EnKFs
 - Advantages: Represents the error-of-the-day
 - Limitations: collapses in the ensemble spread, computationally demanding.
- Combine the two methods Hybrid

Objective

Build an efficient, in terms of cost and performance, high-resolution ocean data assimilation system for the Red Sea (RS), for forecasting and reanalysis.

Configuration of Data assimilation system

✤Ocean Model: MITgcm

- ✓ 30E-50E & 10N-30N covering Red sea and Gulf of Aden, connecting the Arabian sea in the east
- ✓ 4km resolution and 50 levels
- Vertical resolution: 50 levels with 5m resolution in the upper 200 m and 300m resolution in the deeper layers
- ✓ Forcing: 0.5 x 0.5 ECMWF ensemble
- ✓ Boundary Conditions: Daily 25km-resolution GLORYS ocean reanalysis
- ✓ GEBCO Bathymetry and KPP vertical mixing scheme

Assimilation package: DART (Data Assimilation Research Package)

- ✓ Ensemble Adjustment Kalman Filter (EAKF)
- ✓ Localization: 300 km in the horizontal (no-vertical localization)
- ✓ Assimilate:
 - Satellite Level-4 Reynolds SST. 0.1 0.6 degC observations error
 - Satellite Level-3 altimeter SLA (merged). 4cm observations error
 - In situ T & S profiles from EN4 dataset (fully QC'd). 0.5 degC and 0.2 psu observations error

EnOIs: pre-selection of ensembles

- EnOI- Uses a climatological ensembles
- Adaptive EnOI Selects a new ensemble at every assimilation cycle
 - ✓AEnOI-L2 –based on the distance from the present forecast
 - ✓ AEnOI-OMP find a smallest possible subset of elements that best represents the forecasted state.

Time-evolution of (daily averaged forecast) SST and SSH RMSDs

Major factors for degradations:

- Repercussions from dynamical imbalances in the subsurface
- ✓ Spurious error correlations at the surface ???
- ✓ Data over-fitting

Degradations in the subsurface

Majorly factors for degradations:

- ✓ Spurious-correlations in the background error covariance matrix ???
- ✓ Dynamical imbalances

EAKF methods: Flow-dependent ensembles

Experiment	Initial condition	Atm. Forcing	Physics	Assimilation
Fexp	Model state at 1 st Jan, 2011	Ensemble mean	STANDARD	No
lexp	50-member ensemble based on hindcasts recentered on 1 st Jan, 2011.	Ensemble mean	STANDARD	Yes
IAexp	50-member ensemble based on hindcasts recentered fon1 st Jan, 2011.	50-member ensemble	STANDARD	Yes
IAPexp	50-member ensemble based on hindcasts recentered on 1 st Jan, 2011.	50-member ensemble	RANDOM across members	Yes

 $lexp \rightarrow$ Accounts uncertainties in the initial conditons

IAexp \rightarrow Accounts uncertainties in the initial conditions and atmospheric forcing

 $IAPexp \rightarrow$ Accounts uncertainties in the initial conditions, atmospheric forcing, and model physics

Background Error correlations

Analysis corrections on 1st October, 2011

Root Mean Square Differences

Comparisons with in-situ SST and SSS observations from WHOI/KAUST cruise

للعلوم والتقنية

King Abdullah University of Science and Technology

Subsurface Temperature comparisons from WHOI/KAUST cruise

Maximum Vertical Velocity in the ocean column along RS axis

Hybrid-EAKF: Complimenting flow-dependent ensembles with pre-selected ensembles

Traditional Hybrid methods (e.g. Wang et al., 2007)

 $\Sigma^{p,H} = (1 - \alpha)\Sigma^p + \alpha \mathbf{B}, \quad \text{with} \quad 0 \le \alpha \le 1$

We implemented the Hybrid method in the context of the 2-steps, which act update of EAKF with DART, directly on the ensembles

$$\mathbf{X}^{H} = \begin{bmatrix} K_{d} \ \mathbf{X'}^{p} \ , \qquad K_{s} \ \mathbf{X'}^{s} \end{bmatrix} + \ \overline{\mathbf{x}}^{p}$$
Where $K_{d} = \sqrt{\frac{(1-\alpha)(N_{d}+N_{s}-1)}{N_{d}-1}}$ and $K_{s} = \sqrt{\frac{\alpha(N_{d}+N_{s}-1)}{N_{s}-1}}$

The analysis-ensemble is prepared by re-centering the dynamic analysis-ensemble onto the Hybrid analysis-ensemble -mean

$$\mathbf{x}_i^{u,H} = \bar{\mathbf{x}}^{u,H} + (\mathbf{x}_i^u - \bar{\mathbf{x}}^u), \qquad i = 1, \dots, N_d$$

 Σ^p flow-dependent covariance B Static covariance $\Sigma^{p,H}$ Hybrid covariance α weighting factor

 \mathbf{X}^{H} Hybrid ensemble

 $\mathbf{X'}^p$ EAKF prior ensemble anomalies

 $\mathbf{X'}^{s}$ pre-selected static ensemble anomalies

 $ar{\mathbf{x}}^p$ mean of the prior ensemble

 $ar{\mathbf{x}}^u$ mean of the EAKF updated ensemble

 $\bar{\mathbf{x}}^{u,H}$ mean of Hybrid updated ensemble

 $x_i^{u,H}$ Hybrid ith updated ensemble member

 N_d size of the dynamic ensemble

 N_s size of the pre-selected static ensemble

Hybrid-EAKF Flowchart

Forecast-Data comparisons at the surface

Forecast-Data comparisons in the sub-surface

Comparison for Eddy features

Hybrid is best, even better than the interpolated product

Summary

- EnOI-alone methods, which rely on pre-selected ensembles, are prone to spurious corrections.
- Dynamically evolving the ensemble to account for uncertainties in initial conditions, atmospheric forcing and internal physics is greatly beneficial.
- Combining the dynamical ensemble with a pre-selected (climatological) ensemble with the Hybrid method enforces smoothness in the background covariance and greatly reduce computational cost.
- Hybrid method enhances the impact of assimilated observations and provides improved and dynamically balanced state

List of Publications

Toye, H., P. Zhan, G. Gopalakrishnan, A.R. Kartadikaria, H. Huang, O. Knio, and I. Hoteit, (2017). Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing. *Ocean Dynamics.* 67, 915–933, http://dx.doi.org/10.1007/s10236-017-1064-1.

Raboudi N.F., B. Ait-El-Fquih, C. Dawson, and I. Hoteit (2019). Combining Hybrid and One-step-Ahead smoothing for efficient short-Storm Surface Forecasting with an Ensemble Kalman Filter. *Quarterly Journal of Royal Meteorological Society*, 147, 3283-3300, doi: 10.1175/MWR-D-18-0410.1.

Sanikommu S., H. Toye, P. Zhan, S. Langodan, G. Krokos, O. Knio, and I. Hoteit, (2020). Impact of Atmospheric and model physics perturbations on a high-resolution ensemble data assimilation system of the Red Sea. *J. Geophy. Res.,* Under Review.

Toye H., S. Sanikommu, N. F. Raboudi, and I. Hotiet (2020). A Hybrid Ensemble Adjustment Kalman Filter based Highresolution data Assimilation Systerm in the Red Sea: Implementation and Evaluaiton. *Quarterly Journal of Royal Meteorological Society*, Submitted

Toye H., P. Zhan, F. Sana, S. Sanikommu, N. Raboudi, and I. Hoteit (2020). Adaptive Ensemble optimal interpolation for efficient data assimilation in the Red Sea. *Journal of Computational Science*, submitted

Ranked #1 in Citations Per Faculty

Ranked #19 in high quality research output

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology